Manual del cultivo del Olivo

Autores:
Francisco Tapia C.
Mario Astorga P.
Antonio Ibacache G.
Leoncio Martínez B.
Carlos Sierra B.
Carlos Quiróz E.
Patricia Larraín S.
Fernando Riveros B.

Instituto de Investigaciones Agropecuarias
La Serena, Chile, 2003
Manual del cultivo del Olivo

Autores:
Francisco Tapia C.
Mario Astorga P.
Antonio Ibacache G.
Leoncio Martínez B.
Carlos Sierra B.
Carlos Quiroz E.
Patricia Larraín S.
Fernando Riveros B.

Instituto de Investigaciones Agropecuarias
Centro Regional de Investigación Intihuasi
La Serena, Chile, 2003
Autores:
F. Tapia C., Ing. Agr., M.S.
A. Ibacache G., Ing. Agr., M.S.
L. Martínez B., Ing. Agr., Ph.D.
C. Sierra B., Ing. Agr., M.S.
C. Quiroz E., Ing. Agr., Ph.D.
P. Larraín S., Ing. Agr., M.S.
F. Riveros B., Ing. Agr., M.S.

Director Responsable:
Alfonso Osorio U.
Director Regional INIA Intihuasi

Comité Editor:
A. Salvatierra G., Ing. Agr., Ph D.
C. Quiroz E., Ing. Agr., Ph. D.
A. Ibacache G., Ing. Agr., M. S.

Boletín INIA N° 101
Esta publicación fue editada por el Centro Regional de Investigación Intihuasi del Instituto de Investigaciones Agropecuarias, Ministerio de Agricultura
Permitida su reproducción total o parcial citando la fuente y el autor.

Cita bibliográfica correcta:

Publicación completa
Capítulos, ejem.:

Edición de estilo: Silvia Altamirano S. Ingeniera Agrónoma.
Diseño y diagramación: Ideograma Ltda.
Impreso por: Prograf Impresores Ltda.
Cantidad de ejemplares: 500

La Serena, 2003
AUTORES

Francisco Tapia C.
Ingeniero Agrónomo, M.S.
Olivicultura
iniavall@terra.cl

Mario Astorga P.
Ingeniero Agrónomo,
Frutales
mastorgap@entelchile.net

Antonio Ibacache G.
Ingeniero Agrónomo, M.S.
Frutales
aibvicun@entelchile.net

Leoncio Martínez B.
Ingeniero Agrónomo, Ph.D.,
Riego
lmartine@intihuasi.inia.cl

Carlos Sierra B.
Ingeniero Agrónomo, M.S.,
Fertilidad de Suelos
csierra@intihuasi.inia.cl

Carlos Quiroz E.
Ingeniero Agrónomo, Ph. D.
Entomología
cquiroz@intihuasi.inia.cl

Patricia Larraín S.
Ingeniero Agrónomo, M.S.
Entomología
plarrain@intihuasi.inia.cl

Fernando Riveros B.
Ingeniero Agrónomo, M.S.
Fitopatología
friveros@intihuasi.inia.cl
Presentación

La edición de esta nueva publicación del Centro Regional de Investigación Intihuasi, del Instituto de Investigaciones Agropecuarias, INIA, está apoyada por todo un trabajo que sus investigadores han venido desarrollando en el cultivo del olivo, desde hace aproximadamente 20 años en la Región de Atacama y, más recientemente, en la Región de Coquimbo.

En 1984 se desarrollan las primeras actividades con agricultores del valle de Huasco, a través de un Grupo de Transferencia de Tecnología (GTT), labor que se mantuvo por cerca de 10 años; para luego iniciar proyectos de investigación-desarrollo, con financiamiento del Gobierno Regional, que apuntaban a generar información tecnológica para fomentar el manejo moderno del olivar. Concluido tal trabajo se inicia inmediatamente otro, durante el presente año, también con el apoyo del Gobierno Regional de Atacama, enfocado a transferir la información generada a todos los olivicultores de ese importante valle.

En el caso de la Región de Coquimbo, los trabajos se inician en 1999 y se orientan igualmente a generar información sobre el comportamiento de varios cultivares o variedades de olivos en diferentes áreas de la Región, como Cerrillos de Tamaya y Rapel, en valle del Limarí, y Las Cañas, en el sector bajo del río Choapa.

Producto de todo este trabajo se ha generado varias publicaciones y organizado seminarios, cursos y talleres, en los que se ha expuesto los resultados obtenidos. Un particular significado tuvo la realización de las V Jornadas Olivícolas Nacionales, efectuadas en Vallenar el año 2001, reiniciadas luego de 15 años de interrupción. En dicha oportunidad fueron expuestos tanto los trabajos del INIA como de otros investigadores nacionales.

En esta ocasión, hemos querido dar a conocer el resultado del trabajo realizado por nuestros investigadores durante todos estos años, a través de esta publicación que lleva por título "Manual del cultivo del olivo". En ella el lector podrá encontrar los resultados obtenidos en manejo de plagas y enfermedades, manejo del riego, comportamiento de variedades, requerimientos de suelo, agua y clima, manejo de la fertilización, entre otros.

El texto está escrito en un lenguaje técnico, pero fácil de comprender para cualquier lector interesado en el tema, y hemos querido ponerlo a disposición en esta fecha precisamente para que sea revisado por los asistentes a las VI Jornadas Olivícolas Nacionales, que en esta ocasión se realizan en La Serena, Región de Coquimbo.

Felicito a los autores que participaron en el desarrollo de los distintos capítulos de este Boletín. Creo que como institución podemos sentirnos satisfechos con el trabajo realizado a la fecha, reflejado, en parte, con la edición de este documento.

Alfonso Osorio Ulloa
Director Regional
INIA Intihuasi

Manual del cultivo del Olivo
Introducción

El olivo, *Olea europaea* L., es uno de los frutales más antiguos utilizados por el hombre. Su cultivo se remonta a 6.000 años atrás y es originario del Asia Menor, probablemente del área de Siria e Irán (Vernet, 1990).

El cultivo del olivo es introducido a la península Ibérica por los griegos en el año 600 a.C. (Civants, 2000), desarrollándose con gran fuerza en el área del Mediterráneo. A partir del siglo XVI, se produce un gran movimiento migratorio español, iniciándose con ello un activo intercambio de especies, tanto vegetales como animales. Entre las primeras, tuvo gran importancia el olivo por poseer un marcado carácter religioso, sin desmerecer su valor alimenticio, aceite principalmente (Pansiot y Rebours, 1961).

En América se introdujo primero en México, EE.UU. (California) y Perú, desde este último se difundió hacia Chile y Argentina. En la segunda mitad del siglo XVI, el olivo llegó al valle de Azapa y posteriormente fue llevado hacia el valle de Huasco, área donde el cultivo se propagó rápidamente. Las variedades introducidas en aquella época correspondieron a variedades de mesa.

En la actualidad existe una corriente innovadora y de expansión del cultivo del olivo en Chile, el cual se ha integrado a la "nueva olivicultura" vigente a escala mundial. Desde mediados de los años 90, se ha comenzado a introducir nuevas variedades, las cuales han sido multiplicadas con el sistema de estaquillado semileñoso. Este nuevo impulso ha sido el resultado conjunto entre el Gobierno de Chile y la empresa privada.

El mayor incremento de la superficie de olivo se ha producido en la III Región, donde se ha experimentado una renovación del cultivo, eliminándose superficies importantes de antiguas plantaciones, las que han sido reemplazadas por plantaciones modernas de variedades aceiteras y de mesa, manejadas en sistemas de alta densidad. Le siguen en importancia la IV Región y la Región Metropolitana, donde ha existido un creciente interés por desarrollar plantaciones aceiteras, principalmente.

Esta publicación desarrolla en once capítulos, lo relacionado con los requerimientos de clima y suelo; floración, cuaja y fructificación; variedades y portainjertos; propagación; plantación; riego; poda; fertilización; plagas; enfermedades y cosecha. Dicha información está basada en resultados de experiencias nacionales e internacionales, que ayudarán al olivicultor a manejar sus huertos antiguos y nuevos hacia una mayor productividad y calidad del producto cosechado.
Cuadro 1. Evolución de la superficie plantada (ha) de olivo en Chile

<table>
<thead>
<tr>
<th>Regiones</th>
<th>1992(1)</th>
<th>1997(2)</th>
<th>2001(3)</th>
<th>Variación (ha) 1997-2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>937</td>
<td>1.229</td>
<td>1.224</td>
<td>287</td>
</tr>
<tr>
<td>II</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,0</td>
</tr>
<tr>
<td>III</td>
<td>1.120</td>
<td>1.779</td>
<td>1.780</td>
<td>660</td>
</tr>
<tr>
<td>IV</td>
<td>384</td>
<td>271</td>
<td>720</td>
<td>336</td>
</tr>
<tr>
<td>V</td>
<td>259</td>
<td>388</td>
<td>395</td>
<td>136</td>
</tr>
<tr>
<td>RM</td>
<td>206</td>
<td>357</td>
<td>620</td>
<td>414</td>
</tr>
<tr>
<td>VI</td>
<td>106</td>
<td>258</td>
<td>320</td>
<td>214</td>
</tr>
<tr>
<td>VII</td>
<td>35</td>
<td>129</td>
<td>160</td>
<td>125</td>
</tr>
<tr>
<td>VIII</td>
<td>23</td>
<td>70</td>
<td>70</td>
<td>47</td>
</tr>
<tr>
<td>IX</td>
<td>0</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>3.071</td>
<td>4.498</td>
<td>5.306</td>
<td>2.235</td>
</tr>
</tbody>
</table>

Fuente: Fundación Chile, 2002.
1Catastros Frutícolas CIREN 1991-1992 y posteriores estimaciones
2Censo Nacional Agropecuario, 1997
3Estimaciones ODEPA, sujetas a revisión

Bibliografía

Históricamente el olivo en Chile se ha catalogado como un cultivo marginal, al cual, por error, se ha asociado a climas de influencia marina, y las plantaciones se han relegado a zonas con limitaciones de suelo y agua. Aunque en su hábitat natural el olivo crece en situaciones extremas de suelo, pluviometría y temperatura, en general, éstas superan a las condiciones en las que se ha cultivado en nuestro país, obteniéndose producciones relativamente bajas. Sin embargo, en condiciones óptimas de cultivo, el olivo se desarrolla en muy buenas condiciones, expresando al máximo su potencial productivo, más aún si el manejo agronómico es el adecuado.

En el presente capítulo, se entregan los requerimientos básicos necesarios para un cultivo comercial de alta productividad.

Clima

El olivo proviene de un clima mediterráneo, el cual, a grandes rasgos, se caracteriza por presentar dos estaciones: una fría y húmeda, en la que la especie logra el receso o dormancia invernal, y la otra es calurosa y seca, que es cuando se produce la fructificación. En ese clima, durante la estación invernal se produce la acumulación de frío indispensable para que el olivo salga de la dormancia y alcance una floración uniforme, definiéndose la temperatura umbral de 12,5°C, bajo el cual se produce la acumulación de frío u horas frío (HF).

De acuerdo a la experiencia de los países mediterráneos, las temperaturas de verano adecuadas para la fructificación no debieran superar los 35°C y tampoco ser inferiores a 25°C, requiriendo de una acumulación térmica para alcanzar un buen contenido de grasa o de azúcares en los frutos, ya sea para la extracción de aceite o para la elaboración de aceituna de mesa. Aunque el olivo es capaz de soportar altas temperaturas veraniegas, del orden de 40°C, sin sufrir quemaduras, su actividad se detiene cuando éstas superan los 35°C.

En el Cuadro 2, se indican los umbrales térmico y temperaturas críticas en diferentes estados de desarrollo del olivo.

Las primaveras muy calurosas, precedidas de inviernos fríos, concentran la floración, lo cual puede afectar también la fecundación, especialmente si la humedad relativa ambiental es baja (inferior a 50%). Por el contrario, las primaveras frías alargan el período de floración. En general, y sobre todo cuando la floración es extensa, las últimas flores en abrir producirían frutos partenocárpicos, es decir sin que hayan sido polinizadas, y que son de mala calidad. Existen
Cuadro 2. Temperaturas críticas y efecto en diferentes estados fenológicos en olivo

<table>
<thead>
<tr>
<th>Órganos</th>
<th>Temperaturas (°C)</th>
<th>Efecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brotes tiernos</td>
<td>-5 a 0</td>
<td>Quemazón de ápices y heridas en ramillas.</td>
</tr>
<tr>
<td>Brotes menores de 1 año</td>
<td>-10 a -5</td>
<td>Muerte de ramillas.</td>
</tr>
<tr>
<td>Frutos</td>
<td>menos de 5</td>
<td>Daño de fruto, pérdida de cantidad y calidad de aceite.</td>
</tr>
<tr>
<td>Floración</td>
<td>15 a 20</td>
<td>Buena floración.</td>
</tr>
<tr>
<td>Maduración</td>
<td>25 a 35</td>
<td>Buena acumulación de aceite y azúcares, buen tamaño y color de fruto (mesa).</td>
</tr>
</tbody>
</table>

Fuente: Adaptado de Navarro y Parra, 2001

variedades en que es común la producción de frutos partenocárpicos (llamados también zofaireones, en España, o uvilla, en Chile), lo que puede ser mejorado mediante el uso de variedades polinizantes y por aplicación de productos promotores del desarrollo del tubo polínico, como aspersiones de boro al follaje en plena floración.

Las yemas vegetativas no parecen tener necesidad de frío para iniciar su actividad. El crecimiento de los brotes se inicia cuando los días llegan a tener varias horas con temperaturas superior a 21°C.

La humedad ambiental excesiva y permanente favorece el desarrollo de enfermedades, especialmente aquellas causadas por hongos. Las nieblas son perjudiciales para el olivo, principalmente si se producen en el período de floración ya que provocan la caída de flores.

Temperatura

Acumulación térmica: para que los frutos alcancen la maduración requieren que se acumule una cantidad de calor desde inicios de floración hasta la madurez del fruto.

La acumulación térmica se expresa como “grados día” o cantidad de calor que se acumula en 24 horas por sobre una temperatura umbral (10°C). Para su cálculo se utiliza la temperatura media (T°. máx. más T°. min. dividido por 2). Por ejemplo, dos grados día significa que la temperatura media está dos grados sobre la temperatura umbral de 10°C, necesaria para alcanzar la maduración del fruto. De acuerdo a esto, para calcular la acumulación térmica mensual, se emplea la siguiente ecuación:

\[
\text{Grados Día} = (\text{T° media} - 10°C) \times N° \text{ de días del mes}
\]

Se asume 0 cuando la temperatura media es menor o igual a 10°C.

La acumulación térmica medida entre septiembre y junio para las principales zonas olivíferas del país se presenta en el Cuadro 3.
Cuadro 3. Acumulación de grados día entre septiembre y junio, en siete localidades olivareras de Chile

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Grados días</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azapa</td>
<td>2.877</td>
</tr>
<tr>
<td>Copiapó</td>
<td>2.227</td>
</tr>
<tr>
<td>Freirina</td>
<td>1.885</td>
</tr>
<tr>
<td>Vallenar</td>
<td>2.049</td>
</tr>
<tr>
<td>Ovalle</td>
<td>1.832</td>
</tr>
<tr>
<td>Illapel</td>
<td>1.507</td>
</tr>
<tr>
<td>Rancagua</td>
<td>1.331</td>
</tr>
<tr>
<td>Talca</td>
<td>1.748</td>
</tr>
</tbody>
</table>

La temperatura es un factor importante para el desarrollo del fruto. Por ejemplo, en las condiciones de Andalucía, en España, donde por más de cuatro meses las temperaturas oscilan entre 25 y 35°C, el fruto completa en ese período su maduración, alcanzando una mayor acumulación de aceite y azúcares y la coloración negra de la aceituna. En Chile, por estar a una latitud mayor, las temperaturas son más bajas, por lo que la maduración se retrasa y es muy difícil obtener colores negros de piel en variedades de mesa, especialmente la variedad Azapa (Sevillano). En el área de Ovalle, con acumulaciones térmicas cercana a 1.700 grados día entre los meses de septiembre y junio, en nueve meses, esta misma variedad alcanzó una producción de 8.4 t/ha en olivo de tres años, con alrededor de 21% de grasa total en fresco, pero, en esas condiciones, no logra una coloración total del fruto, siendo un rendimiento alto de acuerdo a variedades encontradas en la cuenca del mediterráneo.

Las variedades tienen distintas necesidades de acumulación de calor. Por ejemplo, la variedad Azapa logra su estado de madurez plena en el valle del mismo nombre, donde la acumulación térmica es de 2.877 grados días, no así en las áreas de la VI (Rancagua) y VII Región (Talca), en que la acumulación térmica es prácticamente la mitad. No se tiene claro cual es el comportamiento varietal de olivo en las diferentes zonas, en cuyo tema se encuentra trabajando el INIA para resolver estas interrogantes.

En el caso de aceitunas aceiteras es importante definir el rendimiento graso que se obtiene en las diferentes zonas, el cual será mayor en la medida que la acumulación térmica sea más alta. Para la cuenca del Mediterráneo se indica una acumulación de 4.100 grados días, condición ideal encontrada en la zona de origen del cultivo.

Acumulación de frío u horas frío: el ciclo productivo del olivo, junto con requerir de altas temperaturas para lograr la maduración de sus frutos, necesita que en el invierno, durante la estación de receso, las temperaturas ambientales sumen una determinada cantidad de horas bajo 12,5°C, lo cual es conocido como acumulación de horas frío.

No existe coincidencia entre diferentes investigadores sobre la necesidad de frío del olivo, sin embargo, hay antecedentes que frente a invernos cálidos, la producción se ve afectada.
negativamente. Con relación a lo anterior, se han realizado estudios para determinar la importancia de algunos órganos como acumuladores de frío y sus efectos sobre la cantidad y calidad de floración. Un grupo de investigadores españoles trabajando sobre la variedad Arbequina, determinó que las hojas son los principales órganos que intervienen en el proceso de acumulación de frío y que con un determinado número de horas frío acumuladas, la floración en la primavera siguiente era satisfactoria.

En este sentido, en nuestro país se tiene la experiencia que cuando los inviernos son cálidos, especialmente en los años que se manifiesta la corriente cálida marítima “El Niño”, las producciones siguientes son de menor intensidad, lo que indicaría que el frío invernal es necesario para mantener floraciones abundantes en olivo. En todo caso, en condiciones normales, el clima de las zonas olivareras de Chile, permiten la acumulación suficiente de frío durante el invierno, para la mayoría de las variedades tradicionales, existiendo variedades de bajo requerimiento de frío. Es el caso de ‘Azapa’ la cual se ha originado en las condiciones del desierto de Atacama. Sin embargo, cuando los inviernos son muy suaves, con temperaturas superiores a 15°C — situación que se da cuando se presenta el fenómeno climático de “El Niño”—, no se produce el receso invernal, lo que acarrea un desorden fenológico del olivo, que altera, en general, los procesos de floración y fructificación.

Las temperaturas que se alcanzan en las diferentes regiones de Chile son variables: el extremo norte es más caluroso, y presenta baja acumulación de frío, en cambio en la zona central (Talca), los veranos son calurosos y más cortos y en invierno las temperaturas son más bajas.

En el Cuadro 4, se muestran las temperaturas medias extremas mensuales en siete localidades de Chile donde se cultiva el olivo comercialmente: Azapa, Copiapó, Freirina, Vallemar, Ovalle, Illapel, Rancagua y Talca. Como se puede observar las temperaturas van disminuyendo gradualmente de norte (Azapa) a sur (Talca).

En el Cuadro 5, se presentan las horas frío bajo 12,5°C registradas durante el período de receso invernal en algunas áreas de las regiones de Atacama y Coquimbo.

El ANALIZAR los antecedentes del Cuadro 5, de horas frío (HF) acumuladas en Huasco y las producciones de aceitunas presentadas en la Figura 1, es posible apreciar una relación entre la disminución de HF y el descenso de la producción en la misma temporada.

Humedad relativa

La floración del olivo transcurre cuando las temperaturas de primavera comienzan a subir sobre los 15 a 17°C, lo que es un desencadenante para la salida del receso invernal. El primer evento fenológico que sucede es la floración, la que comienza con la hinchazón de yemas florales y su posterior desarrollo, hasta llegar a plena flor, donde se produce la polinización y posterior cuaja. Para que este proceso suceda exitosamente, deben darse temperaturas, en promedio, de 20°C en el día y una humedad relativa ambiental entre 60 y 80%. Si la situación es de humedad relativa inferior a 50%, la viabilidad del estigma, órgano de la flor destinado a recibir el grano de polen, se reduce a menos de tres días, lo cual es insuficiente para que se desarrolle el tubo polínico y la posterior cuaja del fruto. En este caso se produce una deshidratación del estigma.
Cuadro 4. Temperaturas (°C) máximas, mínimas y medias en las principales áreas donde se cultiva el olivo en Chile

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Temp. (°C)</th>
<th>Meses</th>
<th>N° años</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ene</td>
<td>Feb</td>
<td>Mar</td>
</tr>
<tr>
<td>Azapa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>28,2</td>
<td>29,0</td>
<td>27,6</td>
</tr>
<tr>
<td>Med</td>
<td>22,7</td>
<td>23,2</td>
<td>22,0</td>
</tr>
<tr>
<td>Min</td>
<td>17,2</td>
<td>17,4</td>
<td>16,4</td>
</tr>
<tr>
<td>Copiapó</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>28,7</td>
<td>28,7</td>
<td>27,1</td>
</tr>
<tr>
<td>Med</td>
<td>20,9</td>
<td>20,8</td>
<td>19,3</td>
</tr>
<tr>
<td>Min</td>
<td>13,1</td>
<td>12,9</td>
<td>11,6</td>
</tr>
<tr>
<td>Freirina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>23,5</td>
<td>23,8</td>
<td>22,2</td>
</tr>
<tr>
<td>Med</td>
<td>18,6</td>
<td>18,9</td>
<td>17,6</td>
</tr>
<tr>
<td>Min</td>
<td>13,7</td>
<td>14,1</td>
<td>13,1</td>
</tr>
<tr>
<td>Vallenar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>26,8</td>
<td>26,9</td>
<td>25,4</td>
</tr>
<tr>
<td>Med</td>
<td>19,9</td>
<td>19,8</td>
<td>18,4</td>
</tr>
<tr>
<td>Min</td>
<td>13,0</td>
<td>12,8</td>
<td>11,5</td>
</tr>
<tr>
<td>Ovalle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>26,9</td>
<td>26,4</td>
<td>25,0</td>
</tr>
<tr>
<td>Med</td>
<td>19,4</td>
<td>18,9</td>
<td>17,6</td>
</tr>
<tr>
<td>Min</td>
<td>11,9</td>
<td>11,5</td>
<td>10,2</td>
</tr>
<tr>
<td>Illapel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>26,3</td>
<td>25,1</td>
<td>24,0</td>
</tr>
<tr>
<td>Med</td>
<td>18,5</td>
<td>18,2</td>
<td>17,0</td>
</tr>
<tr>
<td>Min</td>
<td>10,6</td>
<td>11,2</td>
<td>10,1</td>
</tr>
<tr>
<td>Rancagua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>28,2</td>
<td>27,5</td>
<td>25,2</td>
</tr>
<tr>
<td>Med</td>
<td>19,3</td>
<td>18,6</td>
<td>16,5</td>
</tr>
<tr>
<td>Min</td>
<td>10,5</td>
<td>9,8</td>
<td>7,9</td>
</tr>
<tr>
<td>Talca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>30,7</td>
<td>29,9</td>
<td>26,7</td>
</tr>
<tr>
<td>Med</td>
<td>21,4</td>
<td>20,5</td>
<td>18,1</td>
</tr>
<tr>
<td>Min</td>
<td>12,1</td>
<td>11,1</td>
<td>9,6</td>
</tr>
</tbody>
</table>
Cuadro 5. Cantidad de horas-frío bajo 12,5°C registradas entre el 1 de mayo y el 30 de agosto

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Huasco</td>
<td>-</td>
<td>-</td>
<td>1.193</td>
<td>468</td>
<td>303</td>
<td>654</td>
<td></td>
</tr>
<tr>
<td>Cerrillos de Tamaya</td>
<td>2.063</td>
<td>1.629</td>
<td>-</td>
<td>2.066</td>
<td>2.249</td>
<td>-</td>
<td>2.002</td>
</tr>
<tr>
<td>Ovalle</td>
<td>1.965</td>
<td>1.930</td>
<td>1.987</td>
<td>1.600</td>
<td>1.523</td>
<td>-</td>
<td>1.801</td>
</tr>
<tr>
<td>Los Vilos</td>
<td>-</td>
<td>-</td>
<td>1.985</td>
<td>2.128</td>
<td>1.767</td>
<td>-</td>
<td>1.960</td>
</tr>
<tr>
<td>Illapel</td>
<td>2.091</td>
<td>1.725</td>
<td>2.300</td>
<td>2.337</td>
<td>1.990</td>
<td>-</td>
<td>2.089</td>
</tr>
</tbody>
</table>

Nota: Illapel y Ovalle, promedio últimos 5 años; Cerrillos de Tamaya, promedio de cuatro años, y Los Vilos, promedio últimos tres años.

Por el contrario, cuando la humedad es cercana al 100%, el polen se hidrata aumentando de peso, lo que reduce el efecto de polinización anemófila (por el viento). Además, es posible que ante una hidratación excesiva, el grano de polen se destruya.

En el Cuadro 6, se presenta la humedad relativa ambiental existente en las principales zonas de producción del olivo en Chile.

La floración desde norte a sur se va produciendo con un desfase en el tiempo, la que sucede a fines de octubre en Azapa, principios de noviembre en Atacama, mediados del mismo mes en Coquimbo y hacia fines de noviembre en las regiones VI y VII. Con este antecedente es posible ver situaciones críticas en Freirina, por exceso de humedad ambiental, y por ambientes secos en Talca, lo cual aumentaría el riesgo de bajas producciones o marcado aminoramiento en aquellas zonas.

Cuadro 6. Humedad relativa ambiental media mensual promedio existente en las localidades olivareras de Chile

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Ene</th>
<th>Feb</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Ago</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>N° años</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azapa</td>
<td>62,9</td>
<td>65,1</td>
<td>62,0</td>
<td>64,6</td>
<td>70,6</td>
<td>74,0</td>
<td>73,3</td>
<td>72,7</td>
<td>69,6</td>
<td>69,0</td>
<td>66,1</td>
<td>65,7</td>
<td>8</td>
</tr>
<tr>
<td>Copiapó</td>
<td>68,7</td>
<td>70,1</td>
<td>72,4</td>
<td>74,9</td>
<td>77,0</td>
<td>77,2</td>
<td>74,6</td>
<td>74,0</td>
<td>72,7</td>
<td>70,4</td>
<td>70,7</td>
<td>68,3</td>
<td>27</td>
</tr>
<tr>
<td>Huasco</td>
<td>-</td>
</tr>
<tr>
<td>Freirina</td>
<td>80,9</td>
<td>84,9</td>
<td>86,7</td>
<td>86,0</td>
<td>84,0</td>
<td>83,0</td>
<td>82,5</td>
<td>83,2</td>
<td>82,0</td>
<td>83,7</td>
<td>83,0</td>
<td>80,0</td>
<td>6</td>
</tr>
<tr>
<td>Vallenar</td>
<td>66,6</td>
<td>69,5</td>
<td>71,5</td>
<td>72,9</td>
<td>72,0</td>
<td>68,3</td>
<td>69,4</td>
<td>66,5</td>
<td>69,0</td>
<td>67,0</td>
<td>68,2</td>
<td>67,1</td>
<td>23</td>
</tr>
<tr>
<td>Ovalle</td>
<td>62,5</td>
<td>64,8</td>
<td>66,7</td>
<td>72,2</td>
<td>75,0</td>
<td>74,4</td>
<td>77,1</td>
<td>74,1</td>
<td>71,7</td>
<td>66,4</td>
<td>64,5</td>
<td>63,0</td>
<td>10</td>
</tr>
<tr>
<td>Illapel</td>
<td>59,4</td>
<td>60,1</td>
<td>60,6</td>
<td>62,6</td>
<td>64,6</td>
<td>66,2</td>
<td>63,6</td>
<td>63,9</td>
<td>65,5</td>
<td>64,6</td>
<td>59,3</td>
<td>57,6</td>
<td>5</td>
</tr>
<tr>
<td>Rancagua</td>
<td>56,8</td>
<td>61,5</td>
<td>63,3</td>
<td>66,2</td>
<td>75,5</td>
<td>81,8</td>
<td>81,6</td>
<td>78,4</td>
<td>75,1</td>
<td>70,7</td>
<td>62,6</td>
<td>58,5</td>
<td>21</td>
</tr>
<tr>
<td>Talca</td>
<td>54,4</td>
<td>57,4</td>
<td>65,2</td>
<td>73,4</td>
<td>82,8</td>
<td>86,2</td>
<td>85,4</td>
<td>80,6</td>
<td>75,1</td>
<td>69,3</td>
<td>62,2</td>
<td>55,8</td>
<td>36</td>
</tr>
</tbody>
</table>

Suelo

Aunque el olivo puede desarrollarse en suelos marginales, su productividad se ve disminuida cuando es cultivado en esas condiciones.

Pues bien, los requerimientos de suelo del olivo son similares al resto de los frutales en lo que se refiere a la parte física, es decir, profundidad, textura y aireación fundamentalmente. Se definen como adecuado a aquellos suelos de profundidad efectiva superior a 0,8 m, donde el crecimiento de raíces no sea impedido por algún terciel o napa freática. Los suelos cuya profundidad efectiva es inferior a lo indicado, se pueden mejorar construyendo camellones o
alomados, que consiste en acumular suelos de las entre hileras en el sentido de la plantación, dejando mesas de alturas de 0,3 a 0,4 m y anchos de corona de por lo menos 1 m (Foto 1).

El nivel freático, idealmente, debe estar a una profundidad mayor a 3 m, de modo que no haya efecto de ascensión capilar del agua desde la napa, y no se malogre el ambiente de buena aireación para las raíces del olivo, el cual es muy sensible a asfixia radicular, es decir, a suelos anegados, o suelos compactados. Los suelos mullidos, de texturas franco a franco arenosas y con un contenido de materia orgánica superior al 2%, son los que representan una máxima potencialidad productiva de la especie.

Respecto de la tolerancia a suelos con problemas de salinidad, se puede decir que el olivo es una de las especies de mayor tolerancia y en este sentido es posible realizar plantaciones en suelos en que otros frutales ni siquiera sobrevivirían.

El olivo crece bien en suelos de reacción que van de moderadamente ácidos a moderadamente alcalinos (pH entre 5,5 y 8,5). Dentro de este rango, son preferibles aquellos suelos de pH inferior a 7,5, ya que con pH superior es difícil para la planta absorber, principalmente, los micronutrientes, lo que obliga a suplementar con fertilizantes de alto costo.

En general, el pH de los suelos son más básicos en el norte del país (Azapa) y más ácidos hacia el sur, encontrándose suelos de pH 6 o menos en el área de Talca.

La tolerancia a la salinidad, definida por la conductividad eléctrica (C.E.), expresada en deciSiemens por metro (dS/m), es bastante alevada, tolerando hasta menos de 4 dS/m sin que la potencialidad se afecte. Desde este valor hacia arriba, el rendimiento potencial disminuye proporcionalmente al incremento de la salinidad (Cuadro 7).
Cuadro 7. Limitación y efecto de la salinidad del suelo sobre la productividad del olivo

<table>
<thead>
<tr>
<th>Tipo de limitación</th>
<th>Grado de limitación (efecto)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinidad total del suelo C.E.₉₀ (dS/m)</td>
<td>Ligero</td>
</tr>
<tr>
<td>Salinidad del agua de riego C.E.₉₀ (dS/m)</td>
<td>2,6</td>
</tr>
<tr>
<td>Reducción de la producción (%)</td>
<td>10</td>
</tr>
<tr>
<td>Toxicidad por boro (ppm en extracto de saturación)</td>
<td>2</td>
</tr>
<tr>
<td>Toxicidad por cloruros (meq/l en extracto de saturación)</td>
<td>10-15</td>
</tr>
</tbody>
</table>

Existe una relación directa entre las precipitaciones y evapotranspiración con la salinidad de los suelos, siendo los suelos más salinos aquellos pertenecientes a climas secos y de alta evapotranspiración, que aquellos de zonas de mayor pluviometría. También existen otros factores que incrementan los contenidos salinos de los suelos, como ser el riego con aguas de elevado contenido salino, aporte capilar de napas freáticas a la superficie del suelo, problemas de drenaje, entre otros.

Existen diferentes grados de tolerancia de las variedades de olivo a niveles de salinidad. Es así como el grupo de Investigadores de la Universidad de Córdoba ha definido estos grados de tolerancia a la salinidad en condiciones de laboratorio, regando con una solución salina de 100 mL de cloruro de sodio (NaCl) y evaluando el crecimiento del brote apical 49 días después de iniciado el tratamiento (Cuadro 8).

Cuadro 8. Crecimiento relativo de variedades de olivo en solución salina

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Crecimiento relativo (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picual</td>
<td>70</td>
</tr>
<tr>
<td>Arbequina</td>
<td>48</td>
</tr>
<tr>
<td>Frantoio</td>
<td>44</td>
</tr>
<tr>
<td>Gordal Sevillana</td>
<td>44</td>
</tr>
<tr>
<td>Manzanilla de Sevilla</td>
<td>41</td>
</tr>
</tbody>
</table>

En el Cuadro 8 se puede apreciar que la variedad Picual presenta un alto grado de tolerancia, reflejado en el crecimiento vegetativo. Sin embargo, de acuerdo a observaciones de campo,
realizadas en los trabajos que INIA Intihuasi está ejecutando en la región de Atacama, se ha podido evaluar el comportamiento de diferentes variedades, siendo discordantes respecto de la variedad Picual, la que ha tenido problemas cuando se ha cultivado en suelos de reacción básica (pH sobre 8,5) y C.E. superior a 5 dS/m.

En iguales condiciones, las variedades Manzanilla Chilena y Leccino, han manifestado una tolerancia moderada.

Reconocida es la capacidad de supervivencia que presenta el olivo frente a períodos prolongados de sequía, situación habitual en el área mediterránea, cuna del cultivo. Sin embargo, cuando el olivo recibe cantidad y calidad de agua adecuadas, los rendimientos de producción de fruta se incrementan considerablemente, reduciéndose también el efecto de la alternancia de la producción.

Si bien es cierto, el olivo tolera muy bien la sequía, contrariamente, en suelos saturados se puede provocar la muerte del árbol, especialmente en la época de crecimiento; solo bastaría dos a tres semanas de suelo anegado para que el olivo mueran. En invierno este período de tiempo puede ser de 1 a 2 meses, siempre que el olivo esté en pleno receso. Las necesidades hídricas y calidad de agua serán abordadas en el capítulo de riego.

Bibliografía

CAPÍTULO 2
Floración, cuaja y fructificación

Antonio Ibacache G.

Los procesos fisiológicos que conducen a la floración en primavera se inician en el verano precedente. En la yema vegetativa ubicada en la axila de cada hoja se producen cambios que resultan en un brote vegetativo o en un racimo floral (inflorescencia). El proceso de inducción se refiere a los cambios químicos en las yemas vegetativas que provocan la conversión a yemas florales.

Una vez concluida la inducción, se empiezan a formar las partes de la flor, proceso que se conoce como iniciación floral. Esta fase ocurre hacia fines de la temporada (mayo) y puede eventualmente, ser visible al microscopio. La inducción en el olivo se inicia alrededor de 6 semanas después del estado de plena flor y la iniciación puede ser vista varios meses más tarde en agosto o septiembre. Mediante complejas técnicas histoquímicas y microscópicas es posible revelar evidencias de iniciación floral hacia el mes de mayo, pero el proceso de desarrollo de las partes de la flor comienza a fines de agosto.

Floración
Inducción e iniciación floral

El manejo técnico que los olivicultores lleven a cabo en los huertos durante la temporada de crecimiento, influirán tanto en la producción de la actual temporada como en la del año siguiente. A medida que los brotes y frutos crecen, la yema vegetativa presente en la axila de cada hoja compite por nutrientes para iniciar la inducción floral y posteriormente la iniciación.

El proceso de desarrollo floral es dependiente de una buena nutrición mineral. Generalmente el nitrógeno es el principal elemento requerido por el olivo. Un exceso de nitrógeno puede incrementar la cuaja de frutos en algunos casos e indirectamente disminuirla en otros. Por ejemplo, una poda severa de los árboles acompañada por una alta dosis de nitrógeno al suelo conduce a un crecimiento vegetativo excesivo, el cual resulta en una disminución de la producción. La poda para abrir los árboles y mejorar la penetración y distribución de la luz estimula el desarrollo floral. La disponibilidad de agua es crucial. En períodos de sequía, el agua interna favorece las hojas en desmedro del desarrollo de los frutos o las yemas florales.

La temperatura de invierno influencia en gran medida la tasa de floración de la siguiente temporada. Los árboles no fructifican a menos que sean expuestos a una mínima cantidad de
frío. Por lo tanto, el frío invernal es el factor natural que origina el término del reposo invernal de las yemas florales, tal como ocurre en frutales de hoja caediza (Rallo, 1998).

En California una floración óptima ocurre cuando la temperatura diaria fluctúa entre 15,5°C y 19°C la máxima y 2° a 4°C la mínima (Martin et al., 1994). Los árboles mantenidos a una temperatura constante de 13°C florecen profusamente, pero con una inferior calidad de flores (disminuye la cantidad de flores pistiladas). En contraste con las yemas florales, las yemas vegetativas no tienen necesidades de frío para alcanzar una óptima brotación. La ocurrencia de vientos secos y cálidos durante el período de floración se asocia con una reducción en la cuaja de frutos. Por otro lado, con temperaturas anormalmente frías durante el período de desarrollo de las flores (octubre-noviembre), se afecta negativamente la floración, polinización y cuaja.

Diferenciación floral

La diferenciación tiene lugar entre fines de agosto y la floración en noviembre cuando la formación de cada una de las partes de la flor ocurre en la inflorescencia (Foto 2). El período de diferenciación de 8 a 10 semanas antes de la floración es crítico para la formación de flores perfectas. La falta de agua durante la diferenciación floral resulta en flores parcialmente desarrolladas con pistilos ausentes o no funcionales. Esto ocurre con frecuencia en algunos huertos en los que la observación minuciosa indica la presencia de numerosas flores sin pistilo. Para evitar lo anterior es necesario iniciar la temporada con un apropiado nivel de humedad en el perfil del suelo.

![Foto 2. Brotes de olivo variedad Azapa mostrando inflorescencias.](image)

Plena flor

Un árbol adulto produce alrededor de 500.000 flores y para obtener una producción comercial superior a 7 toneladas por hectárea es necesario que el 1 ó 2% de esas flores permanezcan como frutos cuajados. Aproximadamente 14 días después de plena flor la mayoría de las flores no cuajadas caen desde el árbol.

La temperatura durante los dos meses anteriores a la floración es el principal factor determinante de la fecha de floración (Rallo, 1998): temperaturas elevadas en los meses de septiembre y octubre adelantan la floración, sucediendo lo contrario cuando las temperaturas son bajas.
También la duración de la floración depende de la temperatura: temperaturas bajas a partir de la apertura de las primeras flores conducen a floraciones prolongadas (común en los huertos de nuestro país), mientras que temperaturas elevadas acortan el período de floración.

Polinización

Se entiende por polinización la transferencia de polen desde las anteras de una flor al estigma de la misma u otra flor. El principal agente de este transporte es el viento. La polinización del olivo se produce por autopolinización o por polinización cruzada.

En general la producción de polen no es un factor limitante para la fructificación. Sin embargo, la polinización puede limitar la cosecha en algunas ocasiones. Por un lado hay variedades que producen poco polen; también sucede que el polen tiene bajo poder germinativo (por ejemplo Gordal Sevillana) o lo pierda por condiciones ambientales adversas (por ejemplo temperaturas superiores a 30°C en floración). La presencia de variedades polinizantes ayudarían a evitar estos problemas.

Fructificación

Cuaja de frutos

El objetivo de la polinización es la cuaja. El término cuaja se refiere a la población de flores que es polinizada y fertilizada y que desarrolla frutos que se mantienen hasta la cosecha (Foto 3). El factor más importante que reduce la cuaja es la fuerte competencia entre las flores de una inflorescencia. Generalmente sólo un fruto es retenido por inflorescencia. Por razones aún no determinadas, algunos huertos tienen bajas producciones por dos temporadas consecutivas. Otros huertos pueden alcanzar altos rendimientos por 2 ó 3 años antes de tener una producción pequeña. Estas situaciones pueden ser una consecuencia de factores ambientales y fisiológicos.

![Foto 3. Frutos cuajados de la variedad Azapa.](image)

Luego de la cuaja se produce una caída natural de frutos, la que finaliza alrededor de seis
semanas después del estado de plena flor. Una caída adicional de frutos puede ocurrir como consecuencia de ataque de plagas o enfermedades o por condiciones ambientales extremas. Existe una vía alternativa a esta pauta general de caída natural de frutos (Rapoport, 1998). Se trata de la presencia, en algunas variedades, de frutos partenocárpicos (Foto 4) de pequeño tamaño y escaso valor comercial denominados zofairones (España), shotberries (EE.UU.) y uvilla (Chile). En variedades con tendencia a la partenocarquia (por ejemplo Azapa), la polinización cruzada, al aumentar la cantidad de ovarios fecundados, determina una menor cantidad de zofairones.

Crecimiento del fruto

Desde el punto de vista cuantitativo el crecimiento del fruto se ajusta a una curva doble sigmoidea con tres fases sucesivas (Rallo, 1998). En la primera fase se produce una abundante multiplicación celular que asegura un aumento rápido del tamaño del fruto. Además, el hueso (semilla) alcanza casi su tamaño normal. Una clara disminución del crecimiento se observa en la segunda fase cuando el embrión se desarrolla rápidamente. En esta etapa se produce el endurecimiento del hueso. En la última fase el crecimiento se recupera y continúa hasta la madurez con un importante aumento del volumen de las células del mesocarpo (pulpa) del fruto.

En las Figuras 2 y 3, se presentan las curvas de crecimiento de fruto de olivo de 'Azapa' y 'Empeltre' respectivamente, en el valle del Huasco, indicándose además, el período de pinta, evento que indica el inicio de la madurez fisiológica.

Ciclo anual del olivo

El calendario aproximado de los ciclos vegetativo y reproductivo del olivo en el norte chico se indica en la Figura 4. Después del período de reposo invernal, el crecimiento de primavera se inicia con la brotación de las yemas apicales y algunas axilares que se desarrollaron en la temporada anterior. Las últimas, ya diferenciadas, darán lugar a brotes o inflorescencias.

Las yemas vegetativas brotan hacia mediados de septiembre, algo más tarde que las yemas florales. El crecimiento continuo de los brotes dura aproximadamente hasta fin de enero. Un segundo flujo de crecimiento ocurre en otoño (marzo–abril) asociado a la disminución de la temperatura diurna. El crecimiento de los brotes es muy dependiente de la producción ya que los frutos en desarrollo acaparan la mayor parte de los nutrientes del árbol, reduciéndose, por lo tanto, el primero.
La observación de las raíces en el campo, a través de la técnica del rizotrófo o cámara de observación de raíces (Foto 5), muestra un activo crecimiento de nuevas raíces en primavera (Ibacache, 2001). Luego el crecimiento sigue un curso irregular con periodos activos alternados con otros menos activos. Similar a lo que ocurre con los brotes, el crecimiento de las raíces se reduce severamente una vez que se inicia el desarrollo acelerado de los frutos.

Figura 2. Curva típica de crecimiento de fruto de olivo de la variedad de mesa Azapa en el valle de Huasco.

Figura 3. Curva típica de crecimiento del fruto de olivo de la variedad aceitera Empeltre en el valle de Huasco.

Foto 5. Rizotróp o cámara de observación de raíces en el campo.

Bibliografía

CAPITULO 3
Variedades y portainjertos

Francisco Tapia C.
Mario Astorga P.

El olivo es típico cultivo mediterráneo, y uno de los más antiguos, junto a la vid, higuera y palma. La creación de variedades es el resultado de hibridaciones entre olivo cultivado y material silvestre (acebuches), que posteriormente fueron seleccionadas por los agricultores, primero en la cuenca del mediterráneo y luego en las diferentes áreas de cultivo en el mundo.

Desde el valle de Azapa, lugar de introducción del olivo a Chile a mediados del siglo XVI, fue llevado al valle del Huasco, donde el cultivo de variedades de mesa se propagó rápidamente. Posteriormente, junto con la llegada de inmigrantes de países mediterráneos, se han producido nuevas introducciones de material vegetal.

En la década del 50, se fomentó el cultivo del olivo, introduciéndose nuevo material, orientado principalmente a la producción de aceite. Esto se concentró en el valle de Limari, para luego difundirse principalmente hacia el valle de Huasco y en general hacia el resto del país.

En la segunda mitad de la década de los 90, un nuevo impulso olivarero nacional se ha llevado a efecto, cuyo resultado ha sido la introducción de una gran cantidad de variedades de olivo destinadas fundamentalmente a la producción de aceite. Junto a esto se ha ampliado la zona de cultivo, viéndose reflejado en el incremento del 33% de la superficie olívica nacional.

Material vegetal tradicional de las regiones III y IV

El material vegetal de olivo, cultivado tradicionalmente en las regiones III y IV, corresponde principalmente a variedades provenientes de países del mediterráneo, principalmente Italia, España y Grecia. También existe material autóctono, cuyo origen correspondería a hibridaciones de algunas variedades introducidas al país.

La definición de las variedades de olivo actualmente en producción, fue determinada mediante un trabajo de prospección, caracterización e identificación morfológica de olivo, iniciado en 1998 y concluido el año 2001. Este trabajo se desarrolló con el objetivo de establecer la identidad del material vegetal de olivo existente en la III Región de Atacama —principal zona de cultivo del olivo en Chile—, abarcando, además, a la IV Región de Coquimbo. En él se inventarían y catalogaron 15 variedades, concentradas en las principales áreas olivareras del país, que en orden de importancia son: los valles de Huasco, Copiapó y Limari.

De las 15 variedades encontradas, cinco corresponden a variedades originarias de Italia, España...
y Grecia, y ocho se habrían originado localmente, destacando la variedad Azapa, la cual se ha difundido internacionalmente, siendo cultivada en Argentina, Perú y Australia. Las dos variedades restantes son de origen dudoso, por lo cual es necesario realizar estudios con marcadores moleculares para determinar su procedencia.

El trabajo realizado permitió conocer el patrimonio genético de olivo existente en dichos valles, definiéndose sinonimias (diferentes nombres para una misma variedad) y homonimias (erróneamente se usa un mismo nombre para más de una variedad). Se definió además, la importancia de cada una de ellas de acuerdo a la superficie cultivada y su difusión.

La principal variedad de cultivo en esa área, y en el ámbito nacional, es ‘Azapa’. También las variedades Empeltre, Liguria y Manzanilla Chilena, se encuentran presentes en los tres valles, pero su importancia es secundaria respecto de la superficie cultivada. Las variedades Oliva dí Cerignola, Ascolana Huasco y Santa Emiliana están en dos de los valles y el resto se cultiva en sólo uno de los valles (Figura 5).

Figura 5. Distribución geográfica de las variedades de olivo prospectadas en las regiones III y IV de Chile.

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Superficie (ha)</th>
<th>III Región</th>
<th>IV Región</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variedades</td>
<td></td>
<td>Copiapó</td>
<td>Huasco</td>
</tr>
<tr>
<td>1. Azapa</td>
<td></td>
<td>638 (7)</td>
<td>1.142 (9)</td>
</tr>
<tr>
<td>2. Manzanilla chilena</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Empeltre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Liguria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Kalamón</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Grappolo Limari</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Verde</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Oliva dí Cerignola</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Santa Emiliana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Manzanilla recimo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Ascolana Huasco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Ascolana Tenera</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Santa Catalina Huasco</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Gordal sevillana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Carrasquena Huasco</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La mayor concentración está en el valle de Limari (10 variedades), lo que coincide con la masiva introducción de variedades de olivo ocurrida en la década del ’50. En esa área la superficie tradicional cultivada con olivo es de 270 hectáreas. En el valle de Copiapó, se cultivan siete variedades en una superficie de 638 hectáreas y en el valle del Huasco, es donde se cultiva la mayor superficie, 1.142 hectáreas con nueve variedades.
En general, las variedades cultivadas en las regiones III y IV, tradicionalmente corresponden a variedades de mesa, destacando ‘Azapa’, con más del 57% de la superficie total cultivada.

El destino de las variedades de olivo prospectadas en los valles de Copiapó, Huasco y Limarí, y algunas características industriales se presentan en el Cuadro 9.

La variedad Azapa, cuyo destino es para mesa, la relación pulpa/hueso es la más alta, llegando a 9,6. Su fruto, en general, se comporta muy bien en los procesos de industrialización, obteniéndose una aceituna de mesa de muy buena calidad.

En producción de aceite destaca ‘Liguria’, cuyo rendimiento industrial es de 26%.

‘Empeltre’, que en su zona de origen (España) es utilizada casi exclusivamente para la extracción de aceite, en Chile, y en particular en las regiones III y IV, se utiliza para mesa y aceite. Para mesa, es apreciada por su rápida coloración negra, utilizándose para “negras naturales”.

Cuadro 9. Destino de la producción, relación pulpa/hueso y nivel de rendimiento graso de las variedades de olivo prospectadas en las regiones III y IV de Chile.

<table>
<thead>
<tr>
<th>Variedad</th>
<th>Destino</th>
<th>Relación pulpa/hueso</th>
<th>Contenido graso*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascolana Huasco</td>
<td>mesa</td>
<td>6,6</td>
<td>bajo</td>
</tr>
<tr>
<td>Ascolana Tenera</td>
<td>mesa</td>
<td>9,3</td>
<td>bajo</td>
</tr>
<tr>
<td>Azapa</td>
<td>mesa</td>
<td>9,6</td>
<td>bajo</td>
</tr>
<tr>
<td>Carrasqueña Huasco</td>
<td>mesa</td>
<td>3,6</td>
<td>medio</td>
</tr>
<tr>
<td>Empeltre</td>
<td>mesa–aceite</td>
<td>7,8</td>
<td>medio–alto</td>
</tr>
<tr>
<td>Gordal Sevillana</td>
<td>mesa</td>
<td>7,6</td>
<td>bajo</td>
</tr>
<tr>
<td>Grappolo Limarí</td>
<td>aceite</td>
<td>5,7</td>
<td>alto</td>
</tr>
<tr>
<td>Kalamón</td>
<td>mesa</td>
<td>8,3</td>
<td>medio</td>
</tr>
<tr>
<td>Liguria</td>
<td>aceite</td>
<td>4,6</td>
<td>alto</td>
</tr>
<tr>
<td>Manzanilla Chilena</td>
<td>mesa</td>
<td>7,5</td>
<td>medio</td>
</tr>
<tr>
<td>Manzanilla Racimo</td>
<td>aceite</td>
<td>4,3</td>
<td>alto</td>
</tr>
<tr>
<td>Oliva di Cerignola</td>
<td>mesa</td>
<td>8,0</td>
<td>bajo</td>
</tr>
<tr>
<td>Santa Catalina Huasco</td>
<td>mesa–aceite</td>
<td>9,8</td>
<td>medio</td>
</tr>
<tr>
<td>Santa Emiliana</td>
<td>aceite</td>
<td>2,9</td>
<td>alto</td>
</tr>
<tr>
<td>Verde</td>
<td>mesa–aceite</td>
<td>5,8</td>
<td>medio–alto</td>
</tr>
</tbody>
</table>

*El contenido graso fue estimado sobre la base de información de rendimiento industrial proporcionada por los agricultores de acuerdo a su experiencia en el proceso de extracción de aceite. Alto (sobre 22%), medio (18%–22%), bajo (menos de 18%).
Descripción de variedades tradicionales

A continuación, en orden de importancia, según la superficie ocupada por cada una de ellas, se describen las características agronómicas de mayor relevancia de las variedades de olivo prospectadas en las regiones III y IV.

Para un mejor entendimiento de los términos que se emplean en la caracterización agronómica de las variedades de olivo, las definiciones de precoz, medio o tardío se realizan de acuerdo a la situación existente en la zona, comparándose el comportamiento entre ellas, considerándose una variedad precoz a aquella que primero presenta una característica evaluada en la zona, como ser floración, o maduración. Es importante destacar que los niveles de producción de una variedad aceitera son superiores a la de una que se destina para mesa, por lo cual, en relación con la producción, se define de acuerdo a la aptitud de la variedad. Por su parte, respecto a la salinidad, se hace mención a los niveles de salinidad del extracto de saturación del suelo.

Azapa

Originaria de Chile. Su destino principal es para mesa. Rústica, tolerante a salinidad (5 dSm/m) y sequía. Floración temprana, respecto a otras variedades de la zona. La entrada en producción es precoz, lográndose niveles interesantes a partir del tercer año de plantación. Requiere de polinizante, comportándose muy bien, como tal, la variedad Liguria. Su productividad es de media a alta (4 a 8 ton/ha), con un marcado añerismo. Susceptible a repilo, empilomado y verticilosis, a conchuela negra o negrilla y a vericosis. Esta última enfermedad se presenta generalmente cuando la variedad ha sido injertada, afectándose seriamente la producción del árbol. La relación pulpa/hueso es 9,6. Presenta cierta dificultad al deshuesado (Foto 6).

Manzanilla chilena

Variedad difundida en toda el área prospectada. Su uso exclusivo es para mesa. Es de rusticidad media, moderadamente sensible a salinidad (hasta 3 dS/m) y sequía. Susceptible al exceso de humedad. Floración tardía respecto a otras variedades de la zona. Medianamente precoz en su entrada en producción (a partir del tercer año). La productividad es media (10 a 12 ton/ha) y moderadamente alternante (60 a 70% de la producción de años de alta). La relación pulpa/hueso es 7,5, de fácil deshuesado (Foto 7).
Empeltre

Originaria de España. Es rústica, tolerante a excesos de humedad y a salinidad (hasta 5 dS/m). Susceptible a la sequía. Floración temprana, con relación a otras variedades de la zona. No es resistente al viento, sus ramas se desganchan fácilmente. Los frutos son de maduración precoz, comparativamente corresponde a uno de los primeros en la temporada y de fácil desprendimiento. La productividad es elevada (16 a 24 toneladas/ha) y de vecería moderada (reducción entre el 20 y 30% de la producción de años de alta). Para mesa es apreciada por su color, como negras naturales, y para aceite, por su contenido graso entre 21 y 23% (Foto 8).

Liguria

Variedad que además de Chile, se encuentra en Argentina y EE.UU. Su origen probable es Italia, donde es conocida como ‘Pignola’ (Bartolini et al, 1998). Es rústica, tolerante a sequía y salinidad (hasta 5 dS/m). La floración es temprana y abundante. Su producción se destina exclusivamente para aceite. Es de producción media (12 a 14 ton/ha) y moderada vecería (reducción entre el 20 a 30% de años de alta). De maduración tardía, el fruto se adhiere con fuerza al pedicelo. Moderadamente susceptible a ataques de repilo. El rendimiento graso es alto (26%) (Foto 9).

Kalamón

Originaria de Grecia. Es rústica, tolerante a salinidad (hasta 5 dS/m) y medianamente susceptible a sequía. Se utiliza para mesa. Floración y maduración temprana (similar a ‘Empeltre’). De entrada en producción precoz, reportando ingresos interesantes a partir del tercer año de plantación. La productividad es de media a alta (4 a 8 ton/ha) y baja alternancia (reducción en 20% a la de años de alta). La relación pulpa/hueso es 8,3 y es fácil separar el hueso de la pulpa. Tolerante a verticilosis. (Foto 10)
Grappolo Limari
Variedad rústica, tolerante a la sequía. El destino de la producción es el aceite. Es de floración y maduración media respecto a las variedades de la zona. La resistencia a la tracción de sus frutos es media, lo que significa que el fruto no se desprende con facilidad al momento de la cosecha. Posee un alto contenido de aceite, superior al 20% (Foto 11).

Verde
Variedad rústica, tolerante a la sequía. Resistente al viento. Se utiliza para mesa y aceite. La maduración es tardía. La productividad es media a alta (12 a 14 ton/ha) y moderadamente alternante (30% menos a la producción de años de alta). Tolerante a emplomado. Su preparación es verde tipo sevillano, la relación pulpa/hueso es 5.8. El contenido de aceite es medio a alto (16 a 20% rendimiento graso) (Foto 12).

Oliva di Cerignola
Originaria de Italia. Se destina exclusivamente para mesa. Es una variedad vigorosa, de moderada tolerancia a suelos salinos (conductividad eléctrica entre 2 a 3% dS/m). Se desarrolla bien en suelos profundos. La época de floración es tardía. Presenta frutos partenocárpicos. La maduración es temprana y su fruto se adhiere fuertemente al pedicelo. La productividad es media (3 a 4 ton/ha) y alternante (40 a 60% menos a la de años de alta). La relación pulpa/hueso es de 8.0. El fruto presenta una epidermis algo coriácea y pulpa fibrosa. (Foto 13)

Santa Emiliana
Variedad rústica, tolerante a la sequía y moderadamente tolerante a la salinidad (2 a 3 dS/m). Su destino es para aceite. La maduración de sus frutos es tardía. La productividad es elevada (más de 8 ton/ha) y moderada alternancia (20 a 30% menos de la producción de años de alta). El
rendimiento graso es elevado (superior al 19%) y su fruto presenta gran resistencia a la tracción. Se considera tolerante a repilo (Foto 14).

Manzanilla racimo

Variedad de rusticidad media, es decir, moderadamente susceptible a la sequía y viento. Destino principal para la extracción de aceite. La época de floración es de media temporada. Productividad media (6 a 8 ton/ha) y vecería moderada (20 a 30% de la producción de años de alta). Presenta alto contenido graso (superior al 19%). Tolerante a repilo (Foto 15).

Ascolana Huasco

Variedad de rusticidad media, susceptible a sequía. Su destino es para mesa. La maduración se produce a mediados de temporada. La productividad es media (3 a 4 ton/ha) y de aférisimo marcado (40 a 60% menos a lo obtenido en años de alta). Sus frutos deben ser cosechados en verde, pues avanzada su madurez se produce deterioro de la consistencia de la pulpa. La relación pulpa/hueso es 6,6. Tolerante a repilo y emplomado (Foto 16).

Ascolana Tenera

Originaria de Italia. Variedad poco rústica, susceptible a la sequía. Destino exclusivo para mesa. Floración tardía. Presenta frutos pertenocarpicos. La maduración es precoz. La productividad es media (3 a 4 ton/ha) y moderadamente añera (20 a 30% menos a la de años de alta). Debe ser cosechada antes de pinta, pues al ir madurando la pulpa pierde consistencia. Se elabora como verde "estilo sevillano". La relación pulpa/hueso es 9,3. Tolerante al frío (Barranco, 2000) y a repilo, es autoincompatible, por lo que requiere ayuda de polinizantes (Bartolini et al, 1998), lo que habría que determinar mediante ensayos de campo (Foto 17).
Santa Catalina Huasco
Variedad local, rústica, moderadamente tolerante a la salinidad (hasta 5 dS/m). Su destino es principalmente para aceite. Es de floración tardía y su maduración se produce a mediados de temporada. La productividad es media (3 a 4 ton/ha) y añera (40 a 60% menos a un año de alta). El rendimiento graso es medio (14 a 18%), eventualmente es utilizada para mesa, debido principalmente a su aspecto y elevada relación pulpa/hueso, que alcanza a 9,8. Susceptible a negrilla y tolerante a repilo (Foto 18).

Gordal Sevillana
Originaria de España. Variedad poco rústica, susceptible a la sequía y viento, medianamente tolerante a la salinidad (2 a 3 dS/m). Destino exclusivo para mesa. La época de floración es media, con problemas de cuajado. La maduración de sus frutos es precoz. La productividad es baja (2 a 3 ton/ha) y alternante (40 a 60% menos al de un año de alta). Tolerante al frío (Barranco, 2000). La relación pulpa/hueso es 7,6. Resistente a repilo (Foto 19).

Carrasqueña Huasco
Variedad local, rústica, tolerante a sequía y viento. La época de floración es temprana y la madurez de sus frutos es de media a tardía. Sus frutos se adhieren fuertemente al pedicelo, lo cual dificulta su cosecha. La productividad es alta (6 a 7 ton/ha) y moderadamente añera (20 a 30% menos a la de un año de alta). Presencia de frutos partenocárpicos. La relación pulpa hueso es 3,6 (Foto 20).

Nuevas variedades
En el Cuadro 10, se presentan las características más relevantes de variedades que están siendo evaluadas por el INIA en distintas localidades de la III y IV Región, a través de los proyectos financiados por los Gobiernos Regionales de Atacama y Coquimbo. Se trata de definir su comportamiento frente a una nueva situación agroclimática respecto de su zona de origen.
Estas variedades corresponden a introducciones realizadas en las últimas décadas por el sector privado y forman parte del Banco de Germoplasma de Olivo de Huasco.

Se destaca la variedad de mesa Manzanilla de Sevilla, fundamentalmente por su constancia en la producción y fácil industrialización, además de que es bien cotizada en el mercado latinoamericano, especialmente el de Brasil. Las variedades Gordinal Sevillana y Ascolana Tenera, si bien poseen un tamaño bastante grande respecto de las otras aceitunas de mesa, su comportamiento agronómico, en el primer caso, e industrial, en el segundo, no son los adecuados, por lo cual su cultivo no se ha popularizado en Chile. En ‘Gordal sevillana’ es necesario investigar técnicas agronómicas, por ejemplo la polinización, para reducir la alternancia o añerismo y mejorar los rendimientos. En ‘Ascolana Tenera’ debe investigarse el proceso industrial, pues con los métodos actuales, se produce en la aceituna un ablandamiento no deseado.

Uso de portainjertos

La utilización de portainjertos se ha despuestigado bastante en Chile, pues la variedad predominante, ‘Azapa’, antiguamente fue propagada en viveros, injertándola sobre patrón de semillas de ‘Liguria’. También para cambiar de variedad en huertos establecidos se procedió a injertar ‘Azapa’ sobre variedades aceiteras. En ambos casos la variedad Azapa ha manifestado problemas fitosanitarios, ligados con la enfermedad llamada vericosis u hoja de hoz, lo que ha reducido la capacidad vegetativa y productiva de los árboles injertados.

Sin embargo, es posible utilizar material sano; existe conocimiento agronómico de algunas variedades que tal vez no sean de interés comercial, pero si pueden ser buenos portainjertos de variedades altamente demandadas.

Por ejemplo, la variedad comercial Frantoio, se comporta de una manera superior al resto de las variedades frente a problemas de verticillium en suelos, y la variedad Kalamón ha tenido un comportamiento bastante satisfactorio en suelos salinos sodicos de la zona de Copiapó. Desde el punto de vista de crecimiento vegetativo, asociado a que actualmente las plantaciones se están realizando con un gran número de plantas por hectárea, ‘Arbequina’ y ‘Arbusana’, de porte más bien pequeño, podrían ser utilizadas como portainjertos para transferir esta característica a una variedad comercial de vigor excesivo.

En este tema todavía hay mucho que investigar, de modo que al proponer el uso de ciertos patrones, antes debe ser sometido a pruebas de campo.
<table>
<thead>
<tr>
<th>Variedades</th>
<th>Origen</th>
<th>Destino</th>
<th>Rendimiento Graso</th>
<th>Fertilidad</th>
<th>Alternancia</th>
<th>Repilo (tolerancia)</th>
<th>Verticilosis (tolerancia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascolana Tenera</td>
<td>Italia</td>
<td>Mesa</td>
<td>Medio</td>
<td>Autoestéril</td>
<td>Baja</td>
<td>Alta</td>
<td>Baja</td>
</tr>
<tr>
<td>Azapa</td>
<td>Chile</td>
<td>Mesa</td>
<td>S/I</td>
<td>Parcialmente autofértil</td>
<td>Alta</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Cerignola</td>
<td>Italia</td>
<td>Mesa</td>
<td>Bajo</td>
<td>Parcialmente autofértil</td>
<td>Alta</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Kalamata</td>
<td>Grecia</td>
<td>Mesa</td>
<td>S/I</td>
<td>Autofértil</td>
<td>Baja</td>
<td>Baja</td>
<td>Baja</td>
</tr>
<tr>
<td>Manzanilla de Sevilla</td>
<td>España</td>
<td>Mesa</td>
<td>Medio</td>
<td>Autoestéril</td>
<td>Baja</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Nocellara del Belice</td>
<td>Italia</td>
<td>Mesa</td>
<td>Medio</td>
<td>Autoestéril</td>
<td>Media-baja</td>
<td>Media</td>
<td>Baja</td>
</tr>
<tr>
<td>Sevillana</td>
<td>Chile</td>
<td>Mesa</td>
<td>Bajo</td>
<td>Parcialmente autofértil</td>
<td>Alta</td>
<td>Media</td>
<td>Baja</td>
</tr>
<tr>
<td>Arbequina</td>
<td>España</td>
<td>Aceite</td>
<td>Alto</td>
<td>Autofértil</td>
<td>Baja</td>
<td>Baja</td>
<td>Media</td>
</tr>
<tr>
<td>Biancolilla</td>
<td>Italia</td>
<td>Aceite</td>
<td>Bajo</td>
<td>Parcialmente autofértil</td>
<td>Baja</td>
<td>Media</td>
<td>-</td>
</tr>
<tr>
<td>Coratina</td>
<td>Italia</td>
<td>Aceite</td>
<td>Alto</td>
<td>Autoestéril</td>
<td>Baja</td>
<td>Baja</td>
<td>Media</td>
</tr>
<tr>
<td>Frantoio</td>
<td>Italia</td>
<td>Aceite</td>
<td>Alto</td>
<td>Autofértil</td>
<td>Baja</td>
<td>Baja</td>
<td>Media</td>
</tr>
<tr>
<td>Koroneiki</td>
<td>Grecia</td>
<td>Aceite</td>
<td>Alto</td>
<td>-</td>
<td>Baja</td>
<td>Alta</td>
<td>Media-alta</td>
</tr>
<tr>
<td>Leccino</td>
<td>Italia</td>
<td>Aceite</td>
<td>Medio</td>
<td>Autoestéril</td>
<td>Baja</td>
<td>Alta</td>
<td>Baja</td>
</tr>
<tr>
<td>Liguria</td>
<td>Chile</td>
<td>Aceite</td>
<td>Alto</td>
<td>Autofértil</td>
<td>Media-baja</td>
<td>Media</td>
<td>Alta</td>
</tr>
<tr>
<td>Nabali</td>
<td>Jordania</td>
<td>Aceite</td>
<td>Alto</td>
<td>Parcialmente autofértil</td>
<td>-</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Picual</td>
<td>España</td>
<td>Aceite</td>
<td>Alto</td>
<td>Parcialmente autofértil</td>
<td>Baja</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Barnea</td>
<td>Israel</td>
<td>Doble</td>
<td>Medio</td>
<td>Parcialmente autofértil</td>
<td>Baja</td>
<td>Baja</td>
<td>-</td>
</tr>
<tr>
<td>Empeltre</td>
<td>España</td>
<td>Doble</td>
<td>Medio</td>
<td>Parcialmente autofértil</td>
<td>Media-alta</td>
<td>Baja</td>
<td>Alta</td>
</tr>
<tr>
<td>Iturana</td>
<td>Italia</td>
<td>Doble</td>
<td>Medio</td>
<td>Autoestéril</td>
<td>Baja</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Bibliografía

El olivo, desde sus orígenes como especie cultivada ha sido propagado en forma vegetativa, utilizando para ello diferentes métodos, desde la injertación sobre especies silvestres hasta el enraizamiento de material leñoso y herbáceo.

En viveros comerciales, la forma tradicional de propagación ha sido por injerto, método que también se ha usado para el cambio de variedades en huertos antiguos. Los olivicultores, generalmente, lo propagan a partir de material leñoso, utilizando ramas que van desde 1 a 2 cm de diámetro, hasta partes de troncos de árboles antiguos.

En la última década, se ha puesto a punto el método in vitro, el cual técnicamente ha dado resultados, sin embargo, sus costos son altísimos, lo que lo hace poco competitivo con el enraizamiento de estacas.

La propagación por semillas no es un método válido para la multiplicación de una variedad, puesto que la planta resultante es diferente a la planta madre, y no refleja las características que se busca de la variedad elegida. Este medio de propagación sexual, sólo es utilizado por mejoradores genéticos, quienes realizan cruzamientos a través de polinización dirigida, con el propósito de rescatar características sobresalientes de una o más variedades y así obtener nuevas variedades con un mayor número de características favorables.

Comercialmente, antiguos viveros han utilizado semillas para crear el patrón y luego injertarlos con la variedad deseada, lo cual ha sido reemplazado por sistemas masivos y de mayor rapidez, como es el de estacas semi herbáceas mediante nebulización.

Uno de los aspectos fundamentales a considerar al momento de la propagación de plantas, y en especial de olivo, es garantizar la autenticidad varietal de los hijuelos, así mismo como la sanidad y también la productividad. Es por ello que las plantas madres deben estar plenamente identificadas y manejadas agronómicamente en perfectas condiciones de nutrición y sanidad.

Métodos tradicionales de propagación

Los métodos más utilizados son: por estaca leñosa, por injerto y por enraizamiento de estaquillas semileñosas.
Propagación por estacas leñosas

Este método es de gran rusticidad y consiste en utilizar restos de poda, seleccionando ramas de entre 0,5 hasta más de 5 cm de diámetro y de una longitud variable, entre 20 y 30 cm.

Se realiza al aire libre, en un terreno acondicionado para tal efecto. Las estacas se disponen en hilera, enterrando 2/3 de su longitud. Sobre la hilera se colocan cada 10 cm y el espaciado entre hilera es de 30 cm, distanciación suficiente para regar por surcos. En la estaquilla se deja una mínima cantidad de hojas, para que exista circulación de savia, y la evapotranspiración sea reducida, de modo que la estaca no se deshidrate.

La multiplicación por estacas leñosas se puede realizar directamente en el huerto definitivo, sin embargo el tiempo que se pierde puede ser superior a dos años a si se hace en vivero. Pero puede ser una opción útil para replante, donde ya existe un espacio asignado.

El suelo utilizado en la propagación debe ser poroso y permeable, siendo comunes los suelos de texturas arenosas y con materia orgánica superior al 2%. Se emplea riego gravitacional, ya sea por surco o por bordes.

La época apropiada de iniciar el enraizamiento es en invierno, coincidiendo con la poda. Las plántulas permanecen en terreno por unos dos años como mínimo. Cuando las plantas se encuentran terminadas, es decir, de una altura mínima de 80 cm, se sacan del barbecho o canchas de propagación y se llevan a raíz desnuda hasta el sitio de plantación, motivo por el cual el traslado debe realizarse a salidas de inverno, período en que la demanda evapotranspirativa es muy baja. Así se reducen las pérdidas de plantas por deshidratación.

Es un método de bajo costo, sin embargo, la calidad de plantas es heterogénea, puesto que el material es recolectado de una gran cantidad de árboles, sin que de ellos se sepa el comportamiento productivo ni sanitario.

Propagación por injerto

Este método fue muy utilizado hasta fines del siglo pasado. La planta comercial está compuesta de dos materiales de origen diferente: el patrón o portainjerto, que es el que establece la relación suelo–planta y la variedad, que corresponde a la parte aérea, destinada a dar frutos.

Es un tipo de propagación mixta: es decir el patrón es de propagación sexual (por semilla), y la variedad comercial por método asexual (injerto). Por este motivo, es posible que en el plantel donde se utilice este método las plantas no sean homogéneas, puesto que el patrón de cada planta pueden ser genéticamente diferentes, lo que da heterogeneidad al huerto en cuanto a hábitos de crecimiento, pero no en cuanto a la variedad comercial, pues esta dependerá ciento por ciento de las características de la planta madre seleccionada.

La variedad a injertar deberá provenir de un grupo reducido de plantas madres, todas ellas con un registro agronómico y comercial conocido, que cumpla con los requisitos para formar una planta que satisfaga los intereses de los olivicultores que desean adquirirla (autenticidad varietal, libre de pestes y enfermedades, alta productividad, etc.).
La primera etapa, de este método de propagación, es la producción de los portainjertos, los cuales provienen de la germinación de semilla de determinadas variedades de olivo, que en general corresponden a variedades aceiteras. En el caso chileno, la más utilizada por los viveristas es ‘Liguria’, la cual tiene, comparativamente con las otras variedades, un alto poder de germinación.

La semilla se extrae de fruta madura, colectada directamente del árbol. Luego se somete a un proceso de estratificación, que consiste en aplicarles temperatura entre 14 y 18°C durante dos meses. Para ello se preparan canchas con sustrato de arena húmeda dispuestas en bodegas sombrías que en invierno mantengan naturalmente esas temperaturas. Allí se depositan las semillas en capas alternadas con arena, la que debe mantenerse húmeda durante el período que dura el proceso. El objetivo de esto es romper la latencia endógena de la semilla mediante la ganancia de temperaturas en el rango indicado. Posteriormente las semillas se colocan en canchas de germinación o directamente en bolsas, de 3 a 4 litros de capacidad, llenas con sustrato de suelo, arena y materia orgánica en partes iguales, donde se desarrollará el patrón. Cuando éste alcanza un diámetro de tronco de 0,5 cm a una altura de 10 cm sobre el suelo, es el momento ideal para hacer el injerto. Desde la germinación hasta el momento de injertar puede transcurrir un año o más, lo que puede coincidir con el otoño, época en que se injerta en ojo dormido, o con la primavera, en que el injerto será de ojo despierto y a los pocos días se producirá el crecimiento de la yema del material injertado.

En olivo se emplean dos tipos de injertos: el de parche, que se realiza generalmente a salidas de invierno (ojo despierto), y el de lengüeta, que puede realizarse desde fines de otoño hasta inicios de primavera, que actuará como injerto de ojo dormido o despierto, respectivamente.

Injerto de parche: consiste en la remoción de una pequeña parte de la corteza del portainjerto a la altura de 15 a 20 cm sobre el suelo, cuyo espacio queda definido por una figura geométrica de tipo rectangular, la que es reemplazada por un tejido de iguales características proveniente de la variedad a propagar. Se realiza cuando se ha iniciado el flujo de savia, lo cual permite despegar fácilmente la corteza de la planta madre, de la que se obtiene la yema, y también del portainjerto. Una vez puesta la yema sobre el patrón, coincidiendo con la corteza de éste, se amarra con cinta degradable, que se romperá en la medida que el tallo va engrosando, sin dar a posibilidad de estrangularlo.

Es importante que la yema seleccionada se encuentre en receso, sobre una rama en descarga. Normalmente se tiene mejor resultado cuando estas provienen de una rama vigorosa.

Para este método de propagación, el material requerido es bastante pequeño, por lo que no se necesita de un gran número de plantas madres.

Injerto de lengüeta: consiste en unir sobre el portainjerto un ápice de una ramita proveniente de una planta madre. Se realiza lateralmente haciendo un par de cortes en bisel en el patrón a la misma altura que el método de injerto de parche, se remueve parte
de la madera y se deja una superficie de corteza amplia y coincidente con los cortes efectuados en la ramilla de la variedad. Es importante que exista coincidencia plena en ambos cortes, similar a dos piezas de un rompecabezas, pues por allí se alimentará al injerto durante sus estados iniciales. El amarre es similar al explicado para el sistema de parche.

El período adecuado para realizar este tipo de injerto es de mayor amplitud que en el de parche, abarcando tres a cuatro meses, en pleno receso.

Este injerto requiere un diámetro mínimo de portainjerto de 0,5 cm y uno máximo no superior a 1 cm. Es importante que la ramilla a injertar sea del mismo diámetro que el portainjerto, además debe estar en completo receso. Solo basta una ramilla de dos a tres yemas.

Para ambos tipos de injertación se debe podar el patrón a dos a tres yemas sobre el injerto, dejando hojas o ramillas que permitan la circulación de savia, pero en ningún caso debe existir crecimiento activo de esas ramillas, pues ello le quitaría fuerza al injerto.

La planta estará lista para ser llevada al campo cuando tenga un crecimiento en altura no inferior a los 80 cm. El período de obtención de estas plantas es superior a los tres años.

Cuando la propagación por injerto se realiza en contenedores individuales de 3 a 4 litros de capacidad, la planta se puede llevar al campo en cualquier época.

Propagación por enraizamiento de estaquillas semileñosas bajo nebulización

El éxito obtenido con este método de propagación es atribuido al menor espacio empleado y a la mejor calidad y rapidez con que se obtienen las plantas con respecto a otros métodos, lo que permite bajar los costos de producción.

Se basa en la capacidad totipotencial del material vegetal, ayudada con la aplicación exógena de hormonas promotoras de enraizamiento. Básicamente presenta tres etapas fundamentales: promoción de enraizamiento, endurecimiento y crianza, cuya duración en tiempo no sobrepasa los ocho meses.

El material que se multiplica corresponde a ramillas semiherbaceas de crecimiento vigoroso, las que se colectan del tercio medio de ramillas de un año, en descarga, provenientes de una planta madre que cumpla con los requisitos de la variedad. Estas estaquillas son seccionadas hasta una longitud de 15 cm, y en su ápice se dejan de 2 a 4 hojas. Posteriormente, son sometidas durante 5 minutos a una solución a base de benomilo y captafol para eliminar la presencia de hongos como repilo y emplomado (ver Capítulo 10). En esas condiciones las plantas se encuentran listas para su enraizamiento.

Promoción de enraizamiento

Las ramillas preparadas se someten, durante 5 segundos, a una solución hidroalcohólica de ácido Indolbutiríco (IBA), que corresponde a una hormona promotora del enraizamiento.
La concentración es de 1000 ppm de IBA, disuelto en alcohol y posteriormente mezclado en partes iguales con agua destilada.

Luego, las estacas son depositadas en una cama caliente o de propagación, apropiada para favorecer el enraizamiento, donde se mantienen por 60 días.

La cama caliente o de propagación, es el elemento fundamental de este método de multiplicación. Consta de tres elementos: un sustrato, una fuente de calor y una fuente de humedad.

El sustrato debe ser poroso y permeable, buen conductor térmico, con gran capacidad de retención de humedad, y que no se compacte. La perlita, un material de origen volcánico ha dado buenos resultados.

Bajo el sustrato debe existir una fuente de calor —que puede ser proporcionado por material en descomposición (compost), un circuito cerrado de agua o mediante resistencias eléctricas— que asegure una temperatura de entre 23 y 24°C en la base de las estacas. La resistencia eléctrica es el sistema más simple, sin embargo el costo de operación es elevado, pues tiene un alto consumo eléctrico.

La parte aérea debe mantenerse a una temperatura más baja, 2 a 3°C menos que la de la zona de raíces, lo cual se logra mediante aspersiones de agua, con boquillas nebulizadoras de bajo caudal, que mantienen una lámina de agua sobre las hojas, lo cual junto con bajar la temperatura, disminuye la actividad evapotranspirativa y permite mantener una humedad atmosférica de 100%. En estas condiciones se favorece el desarrollo de raíces, no así el de la parte aérea.

El control de la temperatura y humedad es recomendable realizarla en forma automática con dispositivos especiales, como termostatos y humidostatos, los que deben ser controlados a lo menos una vez al día por un operario capacitado, pues la falta de humedad prolongada provoca la muerte de las plántulas y las temperaturas inadecuadas reducen el porcentaje de enraizamiento.

Se recomienda realizar aplicaciones de fungicidas (Previcur), para evitar la "cocedura" de las estacas provocada por un complejo de hongos que proliferan en ambientes húmedos y de alta temperatura.

La densidad de estacas es de 2 mil a 3 mil por metro cuadrado, puestas en hileras.

Transcurrido el período de enraizamiento (dos meses), las plántulas se trasplantan a contenedores individuales de 50 cm³, en un sustrato de turba más nutrientes esenciales. En este momento se tendrá un alto porcentaje de estacas enraizadas, otro porcentaje corresponderá a estaquillas con callo y también habrá estacas muertas. Las que presentan callosidades, no se recomienda mantenerlas en cama, a menos que el material sea escaso, pues el porcentaje de enraizamiento decae bastante.

bajo poder de enraizamiento, con menos del 40%, se encuentran: 'Gordal Sevillana', 'Empeltre', 'Santa Catalina Huasco'. El enraizamiento de 'Azapa' es término medio (60 a 70%).

La mejor época de enraizamiento es a mediados de otoño y a fines de invierno, época que coincide con el crecimiento vegetativo de la especie.

Endurecimiento

Corresponde a la etapa de adaptación de las nuevas plantas a una situación lo más próxima a condiciones naturales de humedad y temperatura. Para ello son mantenidas en un área donde las oscilaciones diarias de temperatura sean algo atenuadas (caseta fría). La frecuencia del riego se va espaciando, cada 15 minutos, recién llegada la plántula, a más de 24 horas, a los dos meses de esta etapa. La temperatura del suelo en esas condiciones es inferior a la ambiental, lo que estimula el crecimiento vegetativo, desarrollándose una o varias yemas, entre las cuales se define inmediatamente la ramilla que será el eje de la nueva plántula, y se elimina el resto de las brotaciones de la estaquilla. Cuando el brote tiene 5 cm de longitud es el momento de ser transplantada a bolsas de 3 a 4 litros de capacidad, cuyo sustrato (suelo, arena y materia orgánica en partes iguales) debe tener los nutrientes en formulación completa (elementos esenciales, principalmente NPK), buena porosidad y capacidad de retención de humedad. De aquí pasa a la etapa de crianza.

Crianza

Es el período de desarrollo de la planta, en que se fuerza el crecimiento, manejando las condiciones de temperatura, humedad y nutrientes.

La planta se guía por un tutor al que se amarra con una cinta de fácil degradación, para que no se produzca estrangulamiento. Como tutor, normalmente se utiliza un alambre galvanizado nº6 que se entierra en la maceta, el cual permite independencia al momento del traslado.

En esta etapa el cuidado del riego es fundamental, pues cualquier exceso de agua puede provocar la muerte de la planta.

La densidad en el criadero no debe sobrepasar las 80 plantas por metro cuadrado, lo cual garantiza una buena supervisión del riego y evita el crecimiento etiolado (plantas de tallos delgados y frágiles de poca pigmentación verde). La planta debe alcanzar una altura mínima de 0,8 m, en un período no superior a cuatro meses.

Manejo de plantas madres

El origen de las estaquillas que se propagarán, debe provenir de árboles correspondientes a la variedad que se está propagando. Esta debe ser debidamente identificada, ya sea por métodos morfológicos o moleculares, de modo de garantizar la autenticidad de la planta.
Cuando se tiene definido el origen de la variedad, normalmente se establece un plantel de plantas madres, las que se cultivan de una manera diferente que las plantas cuyo propósito es producir frutas. Estas son plantadas a alta densidad y se fuerzan, mediante poda y fertilización, a emitir un gran número de ramillas. Con un manejo en seto, se logra mantener a la planta en permanente crecimiento vegetativo y no reproductivo.

Parámetros de calidad de una planta comercial

Una planta comercial de olivo debe cumplir una serie de requisitos antes de ser plantada.

Autenticidad varietal

Las plantas que van saliendo del vivero, deberían contar con un certificado de autenticidad varietal, basado en un análisis molecular de cada partida de plantas, lo que daría mayor seguridad al agricultor cuando adquiere una determinada variedad, y sabrá que al momento de entrada en producción corresponderá exactamente a la que compró. Esto en la actualidad no existe y se ha dado casos en que las variedades no han resultado lo que dicen ser.

Estado fitosanitario óptimo

Una planta debe estar sana, sin presencia de insectos ni hongos, bacterias o virus. Normalmente este aspecto es controlado por el Servicio Agrícola y Ganadero. Sin embargo, es responsabilidad de quien vende garantizar sus plantas, y el comprador obligadamente debe revisar las partidas que adquiere.

Tamaño de plantas

Una planta de olivo ideal para ser plantada, corresponde a las que tienen una edad no superior a los dos años y una altura mínima de 0,8 m. Más de 2 años, significa que el desarrollo de raíces, en contenedores o macetas, es excesivo, debiéndose realizar una poda al momento de la plantación, lo que eleva el costo y se corre el riesgo de infecciones. Cuando se llega a una altura de 0,8 m, la planta se ha independizado de los cuidados extremos que se emplean en vivero, quedando en condiciones para desarrollarse con toda su potencialidad en el campo. Por lo demás, cuando la planta es llevada a terreno con una menor altura, el proceso de acomodación de la misma es más largo, lo cual retrasa el crecimiento y aumenta el porcentaje de pérdidas en la plantación.
Bibliografía

CAPÍTULO 5

Plantación

Mario Astorga P.
Antonio Ibacache G.
Francisco Tapia C.

Cuando un agricultor decide realizar una nueva plantación de olivos, previamente ha debido fijarse los objetivos que persigue. Desde el punto de vista económico debe tratar de conseguir un sistema productivo que le permita el máximo beneficio y que el plazo de recuperación de la inversión sea el mínimo, para lo cual debe acelerar la entrada en producción (Pastor et al., 1998).

En el presente capítulo se abordarán los principales aspectos relacionados con la plantación, como son la elección de la variedad, el uso de polinizadores, la preparación del terreno, la densidad de plantación, la época de plantación, la plantación propiamente tal y los cuidados posteriores a ella.

Elección de variedades

Cuando se va plantar olivos uno de los principales aspectos a considerar es la elección de la variedad la cual debe hacerse con la debida anterioridad. Las características genéticas de la misma son las que definen la resistencia o sensibilidad ante condiciones adversas de clima (sequía, heladas) o ataques de plagas y enfermedades; la precocidad en la entrada en producción; el comportamiento ante determinados problemas de suelo (alto contenido en caliza activa, salinidad, etc.); la producción y su alternancia; la progresión de la maduración; la facilidad o la dificultad para la recolección, incluida la adaptación al uso de máquinas vibradoras; la calidad de las aceitunas y del aceite; el tamaño de los frutos o el rendimiento graso, principalmente. (Pastor et al., 1998).

Asimismo, se ha encontrado una fuerte interacción entre sitio y variedad (INIA, 2003 b), por lo que es imprescindible conocer las características y el comportamiento de la variedad en condiciones agroclimáticas similares. En el capítulo 3, se indican las principales características de las variedades con interés comercial existentes en el País.

En condiciones adecuadas de temperatura, suelo, riego, humedad relativa y viento, el olivo normalmente no requiere de polinización cruzada; sin embargo, cuando el ambiente de cultivo no lo favorece, puede que necesite un polinizante. Por ello, algunas variedades se comportan como autofértiles en algunas localidades y como autoestériles en otras (Lavee, 1996). Si no se cuenta con información local del comportamiento de una variedad, es mejor incluir alguna variedad polinizadora.
Uso de polinizadores

La variedad polinizadora debe cumplir con una serie de requisitos, siendo el más importante la sincronización de la floración con la variedad principal. Además, debe producir abundante polen de buena calidad, y que sea compatible con la variedad principal. Sus frutos deben tener importancia comercial para aceite o mesa (Rallo y Cuevas, 1999).

El proceso de la polinización es anemófilo (por el viento) y gravitacional, de manera que el viento tiene un papel fundamental en el transporte del polen dentro del huerto. Para lograr una polinización efectiva, investigaciones realizadas en distintos países, coinciden en afirmar que la distancia máxima entre polinizador y variedad principal, en el sentido del viento dominante, no debe superar los 40 m, aproximadamente (Rallo y Cuevas, 1999). Para conseguir una buena respuesta a la polinización, se necesitan alrededor de un 10 % de árboles polinizadores en una plantación (Lavee, 1996).

En la Figura 6, se representa un esquema de distribución del polinizador, para una plantación realizada a 8x4m. Si bien, la distribución al 11 % se aproxima al óptimo de plantas polinizadoras, la distribución en filas completas (16,6 %), permite un manejo agronómico más simple en cuanto fertilización, riego, controles fitosanitarios y cosecha.

![Diagrama de polinización](image)

Figura 6. Disposición de variedad polinizante en el huerto: a) al 11 % y b) en hileras completas (adaptado de Rallo y Cuevas, 1999), plantación a 8 x 4 m.

Preparación del terreno

Los olivos son árboles con sistemas radicales más bien superficiales; sin embargo, los suelos con profundidades útiles menores de 0,8 m no son aconsejables (Navarro y Parra, 1999). Al igual
que en otras especies frutales, en suelos de menor profundidad efectiva, se debe construir camarones, los cuales son elevaciones artificiales del terreno en forma de mesetas sobre las que se establecen las plantas (Foto 21). En general, las dimensiones de los camarones al momento de la plantación son: 0,5 m de altura por 1,5 m en la base y 1 m de ancho en el plano superior. La plantación sobre camarones debe considerar necesariamente el empleo de riego localizado de bajo caudal, pues existe riesgo de erosión por el agua de riego (INDAP – PRODECOP, INIA Intihuasi, 1998).

Densidad de plantación

En un huerto comercial de olivos, es muy importante definir el número de árboles por hectárea y su distribución en el terreno. La densidad depende de la variedad, suelo, clima y manejo agronómico que se desea dar al huerto.

Desde mediados de la década de los 70, distintos centros de investigación, principalmente de España e Italia, han propuesto la sustitución del olivar tradicional por otro conocido como “nuevo olivar intensivo”. Las principales características de este nuevo sistema se basan en acortar el período improductivo de los árboles, aprovechar al máximo el potencial productivo del medio en que se desarrolla la plantación y hacer un diseño de plantación en que la mayoría de las operaciones del cultivo puedan ser mecanizadas. En España, se prefieren las formas libres en vaso, sobre un tronco único, homogéneamente distribuidos, en un sistema de alta densidad (300 árboles/ha), que proporciona producciones precoces y abundantes, con relación a la olivicultura tradicional (100 árboles/ha) y que demandan mano de obra poco especializada.

En condiciones de riego, se pueden utilizar marcos de 8x6m, 8x5m, 7x7m, 7x6m, o incluso de 7x5m u 8x4m (Pastor *et al.*, 1998). Cabe señalar también que, para una similar disponibilidad de agua, los suelos poco fértiles pueden admitir mayores densidades de plantación que los terrenos de buena calidad.

En Italia, algunos especialistas proponen formar los árboles en eje central o monocono, que permite aumentar la densidad de plantación hasta 400 ó 500 plantas/ha, sin provocar el efecto de sombreado y excesiva competencia entre las plantas por luz, como ocurre en los sistemas...
que favorecen una mayor expansión radial de la copa, lo que tiene un efecto sobre las mayores producciones iniciales del huerto.

En Chile, en ensayos de variedades realizadas en Vallenar, III Región, en un huerto de siete años establecido a 8x4m (312 plantas por hectárea) conducidas en vaso libre, se han obtenido altas producciones iniciales en las variedades Empeltre, como polinizante (25%), y Azapa, como variedad principal (INIA, 2003a). En Cerrillos de Tamaya, Rapel e Illapel, IV Región, con las mismas variedades y distancias de plantación, se han alcanzado resultados similares hasta el año cuatro (INIA, 2003b).

En las figuras 7 y 8 se señala la evolución de la producción de ‘Empeltre’ y ‘Azapa’, respectivamente.

Figura 7. Rendimiento de un huerto de olivos (312 árboles/ha), variedad Empeltre, obtenido en Vallenar, III Región, hasta el año siete y en Cerrillos de Tamaya, Rapel e Illapel, IV Región, hasta el año cuatro (INIA, 2003).

Figura 8. Rendimiento de un huerto de olivos (312 árboles/ha), variedad Azapa obtenido en Vallenar, III Región, hasta el año siete y en Cerrillos de Tamaya, Rapel e Illapel, IV Región, hasta el año cuatro (INIA, 2003).
‘Empeltre’ fue más precoz en Vallenar que en las localidades de la IV Región. ‘Azapa’, en cambio, inició su producción al tercer año en todas las localidades. Los resultados productivos obtenidos en Rapel, comuna de Montepatia, han sido inferiores a los alcanzados en las otras localidades. En Vallenar, ‘Empeltre’, luego de su primera producción, fue sometida a poda de formación, por lo cual disminuyó la producción del año siguiente. En el caso de la variedad Azapa, que intrínsecamente es añera, la producción ha tenido una tendencia al incremento, salvo en el año seis, que al igual que ‘Empeltre’, los árboles fueron sometidos a una drástica reducción del agua de riego en los meses de agosto y septiembre, por problemas de disponibilidad de agua en aquel momento (INIA, 2003a).

La decisión de cuántos árboles plantar en una superficie determinada, debe basarse, en primer lugar, en antecedentes técnicos y especificaciones de la variedad y, en segundo lugar, en las condiciones de suelo y clima del sector. En climas calurosos y suelos profundos, el crecimiento del olivo es exuberante, por lo que no se recomienda plantar en alta densidad. Por el contrario, si se recomienda en suelos delgados, en los que el crecimiento es lento, pero el manejo nutricional debe ser realizado con mesura, de modo que los árboles no crezcan más que el espacio asignado (marco de plantación), y mantengan un equilibrio vegetativo y reproductivo.

Época de plantación

Actualmente el olivo se multiplica a través del sistema de enraizamiento de estaquillas semileñosas bajo nebulización (ver Capítulo 4), donde las plantas se producen en bolsas de polietileno, de capacidad adecuada a la edad y a tamaño del sistema radical. Por lo que la plantación se puede realizar en casi cualquier época del año. El momento más adecuado dependerá de las condiciones climáticas locales. El período más favorable es hacia fines de invierno, luego que ha pasado el peligro de heladas, y principios de primavera, antes de que aumente la temperatura. No obstante, en zonas con inviernos suaves es posible iniciar la plantación en el otoño. Así, las plantas contarán con un buen arraigamiento para iniciar de mejor forma el nuevo crecimiento de primavera.

Plantación

Los hoyos de plantación no deben ser más profundos ni más anchos que las dimensiones de la bolsa (Foto 22). El ancho debe ser suficiente para facilitar la labor de colocación de la bolsa con la planta. Sin embargo, en suelos de texturas extremas (muy arcillosos o muy arenosos) conviene hacer los hoyos más anchos e incorporar una mezcla de suelo con materia orgánica alrededor de la nueva planta para estimular el crecimiento inicial de nuevas raíces.

Foto 22. Plantación de olivo con ayuda de estacas auxiliares y regla de plantación.
No es necesario aplicar fertilizantes en el fondo del hoyo de plantación, ya que se aumenta el riesgo de que quede en algún sector una concentración elevada en contacto con las nuevas raíces, provocando toxicidad. Por lo demás, el olivo requiere bajos niveles de nutrientes, y durante los primeros años, es suficiente con lo aportado por el suelo.

Antes de poner las plantas en su sitio definitivo, es necesario retirar las etiquetas colocadas en el tronco de las plantas, cortando las amarras, ya que posteriormente pueden estrangularla.

Una vez puestas en el hoyo definitivo, se retira la bolsa y se procede a tapar con tierra de la superficie, que es de mejor calidad. Mientras se va tapando debe apisonarse, de manera que no queden bolsas de aire en la zona de raíces.

La planta debe ser enterrada sólo hasta la zona del cuello, sin sobrepasarlo, respetando la misma altura sobre la tierra que la planta tenía en la bolsa del vivero.

Una vez plantado, es necesario dar un riego abundante, llamado riego de acomodación, con volúmenes de 20 a 30 litros por árbol. No se vuelve a regar hasta, por lo menos, una semana después.

En el momento de la plantación, se debe dejar un eje, que a futuro será el tronco del árbol. Para ello, en el caso de conducción en copa se eliminan todas las ramas laterales bajo los 0,8 m, y en el caso de conducción en monocono, las que estén bajo 0,4 metros.

Cuidados posteriores a la plantación

En zonas de fuerte insolación, como en el norte chico, la corteza del tronco y de los brotes nuevos puede ser lesionada severamente por “golpe de sol”. Para protegerla de esa contingencia, es necesario pintar el tronco y los brotes expuestos al sol, con una lechada de cal o con pintura látex de color blanco.

Los riegos deben ser frecuentes y con poca agua. Se debe tener especial cuidado con el exceso de humedad, ya que el olivo es muy sensible a la asfixia de las raíces. El color amarillo en hojas nuevas puede ser un síntoma de exceso de humedad en el suelo. En este caso es necesario suspender los riegos por algunos días y revisar los volúmenes de agua.

El olivo joven es muy vigoroso, y en la mayoría de los casos presenta un buen equilibrio sólo con los nutrientes extraídos del suelo. Las aplicaciones de fertilizantes pueden provocar un exceso de vigor, lo que obliga a podar anticipadamente, retardándose la entrada en producción. Si los riegos y el manejo general del huerto son apropiados, es innecesaria la fertilización durante los primeros años. En todo caso, las necesidades de nutrientes deben ser registradas a través de la observación del vigor de las plantas y del empleo de análisis foliar, los que se deben iniciar luego de la primera producción del huerto.

El control de malezas, especialmente alrededor de las plantas, es fundamental durante los primeros años. Los herbicidas (sólo de contacto) deben ser aplicados cuidadosamente para evitar que entren en contacto con las hojas de olivo. El control mecánico con azadón también debe evitar cualquier herida en el tronco.

En algunas zonas existe problema de roedores (conejos y liebres) que comen la corteza provocando...
la muerte de algunas plantas. Éstos pueden controlarse con el empleo de barreras físicas, como diversos tipos de mallas.

En lugares donde el viento limita el crecimiento de las plantas, lo ideal es procurar una protección, ya sea de cortinas naturales, que pueden estar ya establecidas, o artificiales, desde el mismo momento de la plantación. Como cortina natural se puede utilizar el mismo olivo, plantando en la primera hilera que enfrenta al viento una variedad de crecimiento rápido y erecto (‘Barnea’ o ‘Manzanilla chilena’), la que se planta a una mayor densidad. En caso de usar una cortina artificial de malla, esta debe tener, idealmente, un 50% de porosidad o sombreadiento. De esta forma se reduce la resistencia al viento y se minimiza la turbulencia cerca de la cortina.

El olivo requiere de un tutor, capaz de mantener verticalmente el tronco del árbol durante 3 ó 4 años, hasta que sea capaz de mantener por sí solo la copa del árbol. En el sistema de conducción en copa (recomendado), se amarra el eje del árbol (futuro tronco) hasta la altura que se desee formar la cruz (0,8 a 1,2 m), luego se deja crecer libremente, formándose las ramas madres sin la intervención de poda. En una conducción en monocono, se debe seguir amarrando hasta 0,2 ó 0,3 m bajo la altura que se desea como altura máxima (Foto 23); así se permite que el ápice en crecimiento se doble, reduciéndose la dominancia apical mediante la emisión de ramas laterales.

Foto 23. Planta de olivo con detalle de tutor y amarras (‘Arbequina’).
Bibliografía

INIA, 2003a. Datos sin publicar proyecto “Manejo moderno de huertos de olivo Valle del Huasco”.

INIA, 2003b. Datos sin publicar proyecto “Manejo huertos de olivo y su desarrollo IV Región”

La adopción de técnicas de riego modernas en el cultivo del olivo es esencial para aumentar la productividad de los huertos, utilizar en forma eficiente los recursos hídricos disponibles y obtener productos de alta calidad. Las prácticas de riego necesariamente, deben ser complementadas con otras para obtener buenos resultados, entre las cuales destaca: densidad de plantación, uso de polinizantes, poda, aplicación de fertilizantes, cosecha y postcosecha.

Este capítulo incluye aspectos de riego por métodos tradicionales y sistemas de riego localizados de alta frecuencia.

Relación suelo–agua–planta

El agua es muy importante para la vida, ya que numerosas reacciones bioquímicas se realizan en este medio como la síntesis de proteínas, lípidos y carbohidratos, elementos estructurales en la formación de nuevos tejidos vegetales (Russell, 1988).

Gran parte de la materia prima necesaria para la fabricación de los tejidos vegetales proviene directamente de la atmósfera. El carbono es aportado por el anhídrido carbónico atmosférico (CO₂), que es captado por la planta a través de las hojas y transformado al interior de ella en hidratos de carbono, proceso conocido como fotosíntesis (Merva, 1995). El intercambio gaseoso de CO₂ y oxígeno (O₂) se realiza por las hojas a través de estructuras denominadas estomas. Cuando los estomas están abiertos, hay intercambio de gases y la fotosíntesis se realiza en plenitud.

Por los estomas abiertos también se pierde vapor de agua, proceso que se conoce como transpiración. Si la transpiración excede al agua absorbida por las raíces, los estomas se cierran para evitar una deshidratación de la planta. En esas condiciones aumenta la resistencia al paso de gases y vapor de agua, y disminuye la fotosíntesis (Deidda et al., 1990).

La apertura de los estomas depende de la energía luminica incidente, del déficit de presión de vapor del aire (humedad relativa) y del contenido de humedad del suelo. De los tres factores mencionados, la humedad del suelo a través del riego es el único que se puede manejar en gran escala, al menos en términos económicos.

La apertura estomática se produce en la mañana cuando el déficit de presión de vapor es bajo, por lo tanto hay una reducida transpiración y una alta asimilación de CO₂. A medida que la hora...
avanza, hay un aumento de la temperatura del aire y del déficit de presión de vapor (DPV) disminuyendo la fotosíntesis y la transpiración (Giménez et al., 1997). Es natural que en días calurosos especialmente a medio día, los estomas permanezcan cerrados o parcialmente cerrados debido al elevado gradiente de humedad existente entre la atmósfera y el interior de la hoja (Fernández et al., 1997), pero los estomas de una planta bien abastecida de agua permanecerán abiertos, en promedio, un mayor número de horas durante la temporada de crecimiento que una planta con problemas de abastecimiento de agua. Aquellas plantas bien regadas dispondrán de más “materia prima” para la fabricación de nuevos tejidos vegetales lo que se refleja en mayor crecimiento vegetativo del árbol y por consiguiente mayor crecimiento y producción.

Un buen estado hídrico de las plantas produce mayor crecimiento vegetativo (Michelakis et al., 1994), producción (Arzani y Arji, 2000; Deidda et al., 1990; Lavee y Schatel, 1999; Pastor et al., 1999), número de frutos por árbol (D'Andría et al., 1999; Michelakis, 1990; Pastor et al. 1998), tamaño de frutos (D'Andría et al., 1999; Michelakis, 1990), porcentaje de aceite (Lavee y Wodner, 1991; Pastor et al. 1998 y 1999) y un aumento en la relación pulpa/hueso (Proielli y Antognozzi, 1996).

El olivo es una especie típica de clima mediterráneo muy tolerante a la sequía (Pastor et al., 1998). El árbol puede sobrevivir en condiciones extremas de falta de humedad, pero su crecimiento vegetativo y productivo serán muy restringidos (Doorenbos y Kassam, 1986).

El requerimiento hídrico del olivo con alta producción, es semejante a muchas otras especies de frutales (Doorenbos y Kassam, 1986). Goldhamer et al. (1994), aplicaron tasas de riego sobre 8.000 m³/ha/año en olivos variedad Manzanillo, utilizando riego por goteo en el valle de San Joaquín, California, logrando muy buenas producciones respecto a tasas de riego inferiores. Las condiciones donde se realizó el ensayo fueron: suelo de textura franco arenosa con un estrato impermeable a 0,5 m de profundidad y una evapotranspiración potencial anual de 1.300 mm/año. Respecto a los ingresos ($/ha) del agricultor, encontró una buena correlación entre agua aplicada e ingresos debido a la mejor calidad de los frutos (tamaño). Ferreyra et al., 2001 reportó tasas de riego de 6.500 a 8.500 m³/ha/año en la variedad Azapa, en olivos de ocho años, en la zona de San Felipe, V Región.

En las condiciones agroecológicas del norte chico (Regiones de Atacama y Coquimbo), la evapotranspiración potencial anual es del orden de 1.300 a 1.600 mm/año (Ciren–CNR, 1996) en el sector distante a menos de 60 km de la costa, por lo tanto, las tasas de riego para el olivo son entre 8.000 a 8.000 m³/ha/año.

Respecto a la situación del riego en algunas provincias de España, las tasas utilizadas son inferiores a las estimadas para la III y IV Región debido a la precipitación que es del orden de 500 mm/año o superiores. En estas condiciones, riegos complementarios de 1.500 a 3.000 m³/ha/año son suficientes para obtener buenas producciones (Arzani y Arji, 2000; Castro et al., 1996; Campbell, 1986; Goldhamer, 1999).

Los efectos del déficit hídrico en olivos dependen del tipo de proceso fisiológico. Un déficit hídrico durante todo el año afectará directamente el crecimiento vegetativo del árbol, la producción y calidad de las flores, la cuaja, la caída de frutos previo a la cosecha y el tamaño de los frutos. En elCuadro 11 se señalan los efectos del déficit hídrico sobre diferentes procesos.
Cuadro 11. Efecto del déficit hídrico en diferentes periodos, sobre diferentes procesos en Olivo

<table>
<thead>
<tr>
<th>Proceso</th>
<th>Período</th>
<th>Efecto del déficit hídrico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crecimiento vegetativo</td>
<td>Todo el año</td>
<td>Reducción del crecimiento y del número de flores al año.</td>
</tr>
<tr>
<td>Desarrollo de yemas florales</td>
<td>Agosto–octubre</td>
<td>Reducción número de flores.</td>
</tr>
<tr>
<td>Floración</td>
<td>Noviembre</td>
<td>Floración incompleta.</td>
</tr>
<tr>
<td>Caujado de frutos</td>
<td>Noviembre–diciembre</td>
<td>Aumenta el añerismo.</td>
</tr>
<tr>
<td>Crecimiento inicial del fruto</td>
<td>Diciembre–enero</td>
<td>Disminuye el tamaño de fruto (menor número de células/fruto).</td>
</tr>
<tr>
<td>Crecimiento posterior del fruto</td>
<td>Febrero–cosecha</td>
<td>Disminuye el tamaño del fruto (menor tamaño de células del fruto).</td>
</tr>
<tr>
<td>Acumulación de aceite</td>
<td>Enero–may.</td>
<td>Disminuye el contenido de aceite/fruto.</td>
</tr>
</tbody>
</table>

Recientes estudios realizados por Ferreyra et al, 2001, Goldhamer, 1999 y Motilva et al., 2000 sugieren la posibilidad de reducir las tasas de riego en algunos periodos fenológicos con el objetivo de disminuir el consumo de agua sin causar pérdidas importantes en la producción. Una disminución de un 50% de la tasa de riego, en el periodo comprendido entre endurecimiento del carozo y el inicio de la maduración, no afecta la carga frutal (no hay mayor tendencia a la caída de frutos), el peso de los frutos ni el valor comercial de la producción. Esta práctica permite ahorrar entre 30 a 35% de los volúmenes de agua aplicados.

Para promover un déficit hídrico controlado, es necesario considerar algunos factores como: la capacidad de retención de humedad del suelo, el contenido de sales solubles del suelo y el agua, el método de riego utilizado, la lluvia invernal y la disponibilidad de agua para riego. En las condiciones del norte chico, es necesario validar estas experiencias debido a la baja capacidad de retención de humedad de los suelos, la presencia de sales en el perfil y la escasa pluviometría anual.

El riego

El riego es la aplicación artificial de agua al suelo con el fin de suministrar a los cultivos, la humedad necesaria para su desarrollo (Israelsen y Hansen, 1973).

Tres preguntas son relevantes en relación con la práctica del riego: cómo, cuánto y cuándo regar. A continuación, se dará respuesta a cada una de estas interrogantes, para el cultivo del olivo. Debido al carácter general de este artículo, aspectos técnicos específicos deberán ser consultados en literatura técnica especializada.
Cómo regar

Se refiere a los métodos utilizados para regar. En general, los métodos de riego se clasifican en dos grandes grupos: sistemas de riego gravitacionales y sistemas de riego presurizados.

En los métodos de riego gravitacionales, el agua fluye por diferencia de cota entre el lugar donde se recibe el agua y donde se encuentran los árboles. El agua se puede conducir entre las hileras de plantas en forma de tendido, surcos, bordes y tazas. A medida que el agua avanza en el huerto, ésta infiltra humedeciendo el perfil del suelo.

Estos sistemas se caracterizan por su baja eficiencia (relación entre el agua efectivamente utilizada por el cultivo y el agua aplicada al potrero). Los valores de eficiencias de aplicación promedio para diversos métodos de riego gravitacionales y presurizados se indican en el Cuadro 12. Estos valores son sólo de referencia y ayudan a comprender la diferencia entre sistemas de riego gravitacionales y presurizados.

Los sistemas de riego presurizados, presentan eficiencias nominales muy superiores. La menor eficiencia de los sistemas gravitacionales está dada por el agua que se pierde por percolación profunda, por escorrentía superficial y por la baja uniformidad de aplicación, fuertemente influenciada por el tipo de suelo, la topografía, el caudal disponible y el grado de instrucción y motivación del obrero agrícola.

Cuadro 12. Valores de eficiencia de aplicación promedio para diferentes métodos de riego

<table>
<thead>
<tr>
<th>Método de Riego</th>
<th>Eficiencia (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tendido</td>
<td>30</td>
</tr>
<tr>
<td>Surcos</td>
<td>45</td>
</tr>
<tr>
<td>Bordes rectos</td>
<td>50</td>
</tr>
<tr>
<td>Bordes en contorno</td>
<td>60</td>
</tr>
<tr>
<td>Pretiles</td>
<td>60</td>
</tr>
<tr>
<td>Tazas</td>
<td>65</td>
</tr>
<tr>
<td>Californiano</td>
<td>65</td>
</tr>
<tr>
<td>Aspersión</td>
<td>75</td>
</tr>
<tr>
<td>Microjet</td>
<td>85</td>
</tr>
<tr>
<td>Goteo</td>
<td>90</td>
</tr>
</tbody>
</table>

Fuente: CNR, Reglamento Ley N° 18.450.

Los sistemas de riego gravitacionales son de bajo costo de instalación y operación. Las desventajas detectadas son las siguientes:

- Pérdidas de agua por percolación profunda y por escorrentía superficial.
- Bajo coeficiente de uniformidad, es decir, no todas las plantas reciben la misma cantidad de agua.
Alto nivel de erosión del suelo.

Debido a las variaciones de las características físicas del suelo, es muy difícil determinar la frecuencia de riego óptima para cada plantación a lo largo del año.

Alta incidencia de malezas.

Los métodos de riego presurizados se caracterizan por conducir el agua por tuberías. Existen dos sub-grupos: riego por aspersión, en que el agua se aplica en forma de lluvia, y riego localizado, que corresponden a las aplicaciones gota a gota o en forma de pequeña lluvia, junto a la planta. Los sistemas de riego por aspersión no son utilizados en Chile para el riego de olivos. Los métodos más utilizados son: goteo y microaspersión. Estos sistemas se caracterizan por una alta eficiencia en el uso del agua (sobre el 85%) muy alta uniformidad en la aplicación, no hay erosión del suelo, aún en aquellos con fuertes pendientes, disminuye la incidencia de malezas y permite aplicar los fertilizantes por medio del riego (fertirrigación).

Entre los problemas del riego localizado se encuentran:

- Alto costo de instalación.
- Los operarios deben estar capacitados en el uso de esta tecnología.
- Se debe disponer de agua para regar con mayor frecuencia (uso de estanques acumuladores).
- Se requiere disponer de equipos de bombeo para hacer funcionar el sistema (salvo en equipos operados por diferencia de cota entre la fuente de agua y el lugar donde se encuentran los árboles).

Para las condiciones agroecológicas de los valles transversales de las regiones de Atacama y Coquimbo, el riego por goteo es el método que presenta mayores ventajas, dada la eficiencia de aplicación de agua, el manejo de los fertilizantes a través del agua de riego (fertirrigación), y la posibilidad de utilizar suelos que presentan pendientes superiores a 5% y excesiva pedregosidad.

Cuánto regar

Tres son los aspectos más relevantes para determinar la cantidad de agua a aplicar y la frecuencia de riego: evapotranspiración del cultivo, método de riego, y capacidad de retención de humedad del suelo.

Evapotranspiración del cultivo (ETc): es el agua utilizada por el árbol en la transpiración desde las hojas, más el agua que se evapora directamente desde el suelo. El volumen de agua ocupado en las reacciones metabólicas y que pasa a formar parte de los tejidos vegetales es muy bajo, en comparación al utilizado en transpiración y evaporación directa desde el suelo.

La transpiración y la evaporación están determinadas por un fenómeno físico que es el gradiente de humedad entre la atmósfera y el interior de la hoja (transpiración) o la superficie del suelo.
(evaporación), término que se conoce como déficit de presión de vapor (DPV). La concentración de vapor de agua en la atmósfera a una determinada temperatura, término conocido como “humedad relativa”, es menor que al interior de la hoja (cerca al 100%). El agua se mueve desde donde hay mayor humedad relativa hacia donde hay menor humedad relativa, por lo tanto, el agua pasa desde el interior de las hojas, a través de las estomas hacia la atmósfera.

El déficit de presión de vapor está gobernado por factores físicos de la atmósfera como la temperatura, la humedad relativa, la radiación solar y la velocidad del viento (Campbell, 1996).

Los parámetros descritos (temperatura, viento, etc), también afectan la evaporación de agua desde un estanque, al igual como sucede con la evapotranspiración, por lo tanto, midiendo la evaporación desde un estanque, se puede estimar el agua utilizada por el cultivo. La bandeja de evaporación Clase A es el instrumento utilizado para estimar la ETc. Existe una relación directa entre la evaporación de bandeja (EB) y la Evapotranspiración del cultivo.

Midiendo la temperatura del aire, la humedad relativa, la radiación solar y la velocidad del viento en forma individual, se puede estimar la evapotranspiración del cultivo utilizando modelos matemáticos, como Penman-Monteith, Blanney y Cridle y Turc, entre otros. (Hatfield y Fuchs, 1990). Este es el principio de utilización de estaciones meteorológicas automáticas.

Para conocer ETc a partir de EB se debe realizar algunas operaciones aritméticas sobre la base de algunos coeficientes de correlación. La Ecuación 1 define ETc a base de la EB (Doorenbos, y Pruitt, 1977).

\[ETc = Kb \times Kc \times EB \quad (1) \]

Donde:
- \(ETc \) = Evapotranspiración del cultivo (mm/día)
- \(Kb \) = Coeficiente de instalación de bandeja
- \(Kc \) = Coeficiente de cultivo
- \(EB \) = Evaporación de Bandeja clase A instalada siguiendo norma de FAO.

La evaporación de bandeja (EB), para el área olívcola del valle de Huasco, y de localidades de la IV Región se señalan en el Cuadro 13.

En el valle del Huasco la olivicultura se concentra fundamentalmente en las comunas de Freirina y Huasco, zona fuertemente influenciada por el mar. En el área comprendida entre Maitencillo, por el Este, y el océano Pacífico, los valores más altos de EB (5,0 a 5,2) mm/día corresponden a los meses de diciembre y enero, y los más bajos se registran en junio y julio con EB de 3,2 mm/ día en Huasco.

En la región de Coquimbo, las plantaciones de olivos se encuentran principalmente en la zona de Cerrillos, Camarico y Talhuén, con algún grado de influencia costera; mientras que Combarbalá, Hurtado, Pichasca y Rapel son localidades del interior. En Combarbalá, la EB de enero casi duplica a la registrada en ese mismo mes en el valle del Huasco, mientras que en Illapel la EB de julio apenas alcanza a 1,42 mm/día.
Cuadro 13. Evaporación de Bandeja (EB), distintas localidades evaluadas por INIA.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Camarico</th>
<th>Carrillos</th>
<th>Combarbilla</th>
<th>Hurtado</th>
<th>Pichasca</th>
<th>Puntiagüi</th>
<th>Rapel</th>
<th>Illapel</th>
<th>Mantencillo a Huasco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ene.</td>
<td>8,4</td>
<td>7,9</td>
<td>10,0</td>
<td>8,6</td>
<td>9,2</td>
<td>8,1</td>
<td>9,5</td>
<td>9,4</td>
<td>5,2</td>
</tr>
<tr>
<td>Feb.</td>
<td>8,6</td>
<td>7,5</td>
<td>9,5</td>
<td>8,5</td>
<td>9,5</td>
<td>9,1</td>
<td>9,1</td>
<td>8,4</td>
<td>4,8</td>
</tr>
<tr>
<td>Mar.</td>
<td>6,0</td>
<td>5,9</td>
<td>8,9</td>
<td>6,7</td>
<td>7,5</td>
<td>5,3</td>
<td>7,1</td>
<td>6,3</td>
<td>4,2</td>
</tr>
<tr>
<td>Abr.</td>
<td>3,4</td>
<td>3,8</td>
<td>7,7</td>
<td>5,0</td>
<td>5,9</td>
<td>3,4</td>
<td>5,1</td>
<td>3,9</td>
<td>3,9</td>
</tr>
<tr>
<td>May.</td>
<td>1,9</td>
<td>2,2</td>
<td>4,7</td>
<td>3,1</td>
<td>3,3</td>
<td>2,0</td>
<td>3,1</td>
<td>2,2</td>
<td>3,4</td>
</tr>
<tr>
<td>Jun.</td>
<td>1,4</td>
<td>1,8</td>
<td>4,2</td>
<td>2,5</td>
<td>2,7</td>
<td>1,3</td>
<td>2,5</td>
<td>1,6</td>
<td>3,2</td>
</tr>
<tr>
<td>Jul.</td>
<td>1,3</td>
<td>1,7</td>
<td>4,2</td>
<td>2,7</td>
<td>2,8</td>
<td>1,5</td>
<td>2,5</td>
<td>1,4</td>
<td>3,2</td>
</tr>
<tr>
<td>Ago.</td>
<td>1,8</td>
<td>2,2</td>
<td>4,1</td>
<td>3,8</td>
<td>3,1</td>
<td>1,8</td>
<td>4,4</td>
<td>2,0</td>
<td>3,4</td>
</tr>
<tr>
<td>Sep.</td>
<td>2,5</td>
<td>3,0</td>
<td>5,4</td>
<td>4,4</td>
<td>3,5</td>
<td>3,4</td>
<td>5,5</td>
<td>3,0</td>
<td>3,9</td>
</tr>
<tr>
<td>Oct.</td>
<td>4,4</td>
<td>5,1</td>
<td>7,4</td>
<td>6,8</td>
<td>5,8</td>
<td>3,5</td>
<td>6,2</td>
<td>5,1</td>
<td>4,2</td>
</tr>
<tr>
<td>Nov.</td>
<td>6,2</td>
<td>7,0</td>
<td>8,1</td>
<td>8,2</td>
<td>8,2</td>
<td>7,3</td>
<td>7,4</td>
<td>7,5</td>
<td>4,6</td>
</tr>
<tr>
<td>Dic.</td>
<td>8,0</td>
<td>7,7</td>
<td>8,9</td>
<td>8,2</td>
<td>9,2</td>
<td>9,4</td>
<td>8,4</td>
<td>9,2</td>
<td>5,0</td>
</tr>
</tbody>
</table>

Coeficiente de bandeja (Kb): este coeficiente es función de las condiciones ambientales del lugar donde se instala la bandeja Clase A. El viento, la humedad relativa y la presencia o ausencia de vegetación en las cercanías determina el valor de Kb. En general, el Kb está en el rango de 0,65 a 0,70.

Coeficiente de cultivo (Kc): el coeficiente de cultivo, es función de la morfología del cultivo (forma y tamaño de la hoja, índice de área foliar, densidad y forma de los estomas) y del período fenológico. En el Cuadro 14, se indican valores de Kc para el olivo utilizados en España. Al respecto, Goldhamer (1999) obtuvo buenos resultados en términos productivos y económicos utilizando valores de Kc como los señalados, en un área donde la evapotranspiración potencial es del orden de 1.300 mm/año y una pluvimetría anual de 100 mm, situación muy semejante a las condiciones ambientales donde se cultiva el olivo en la III y IV Región.

El valor de Kc es muy útil para estimar el requerimiento de agua del cultivo, pero tiene una importancia secundaria en la determinación del volumen de agua a aplicar, el cual es afectado
muy fuertemente por la eficiencia de utilización del agua, siendo muy importante el método de riego utilizado, el método de medición de la evaporación de bandeja y el grado de instrucción del regador.

Cuadro 14. Coeficientes de cultivo para el olivo

<table>
<thead>
<tr>
<th>Período Fenológico</th>
<th>Coeficiente Kc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receso invernal</td>
<td>0,40 – 0,55</td>
</tr>
<tr>
<td>Floración</td>
<td>0,60</td>
</tr>
<tr>
<td>Brotación</td>
<td>0,65</td>
</tr>
<tr>
<td>Engorda</td>
<td>0,65</td>
</tr>
<tr>
<td>Cosecha</td>
<td>0,60</td>
</tr>
</tbody>
</table>

Ejercicio: un huerto en la comuna de Freirina cuyo marco de plantación es 8x8 m, los árboles tienen un diámetro de copa promedio de 6 metros. El período fenológico es cercano a la cosecha y la evaporación de bandeja fue de 4,8 mm ¿Cuánto es el requerimiento de agua?

Solución: el coeficiente de bandeja (Kb) es 0,70 (bandeja con vegetación a su alrededor) y el coeficiente de cultivo es 0,60 (Cuadro 14). La ETc esta dada por la Ecuación 1, entonces:

\[
ETc = 0,70 \times 0,60 \times 4,8
\]

\[
ETc = 2,02 \text{ mm/día}
\]

Nota: 1 mm = 1 l/m² = 10 m³/ha

Respuesta: la evapotranspiración del cultivo para las condiciones del ejercicio es 2,02 mm/día, o bien que un huerto de una hectárea perdió a la atmósfera 20,2 m³/día, entre el agua evaporada directamente desde las hojas (transpiración) y del suelo (transpiración).

Aunque los coeficientes Kb y Kc son dinámicos en el tiempo, una buena aproximación se obtiene utilizando el valor 0,50 para el conjunto de coeficientes cuando se utilizan sistemas de riego gravitacionales. Este procedimiento tiende a simplificar el proceso, aún cuando sobrestima el consumo de agua, especialmente en invierno y en aquellos huertos con baja incidencia de malezas.
Ejercicio: estimar ETC asumiendo que el valor 0,50 reemplaza los valores de coeficientes Kb y Kc.

Solución:

\[ETC = 0,50 \times 4,8 \]
\[ETC = 2,40 \text{ mm/día} \]

Respuesta: la evapotranspiración del cultivo para las condiciones del ejercicio es 2,40 mm/día (24,0 m³/ha/día).

La diferencia porcentual entre ambas soluciones es cercana al 20%. En el segundo caso, la ETC excede en 0,4 mm, que representa una cantidad de agua equivalente a 4 m³/ha/día.

Eficiencia del método de riego: la cantidad de agua a aplicar (Ha) es función de la evapotranspiración del cultivo y de la eficiencia del método de riego (Ecuación 2).

\[Ha = \frac{ETC}{Ef} \quad (2) \]

Los valores de eficiencias para diferentes métodos de riego se señalan en el Cuadro 12.

A pesar que pueden existir errores en el proceso de estimar ETC al asumir un valor de 0,50 para el conjunto de coeficientes, estos son de pequeña magnitud en comparación a los errores observados al estimar la eficiencia de aplicación (Ef).

Ejercicio: se riega un huerto de olivos con sistema de riego por surcos. La eficiencia real del sistema es 40%. ¿Cuánta agua debo aplicar conociendo que la Evapotranspiración acumulada en 10 días fue 25 mm?

Solución:

\[Ha = \frac{25}{0,4} \]
\[Ha = 62,5 \text{ mm} \]

Respuesta: se debe aplicar 62,5 mm de altura de agua, equivalente a 625,0 m³/ha. De esa cantidad de agua, sólo 250 m³/ha fueron aprovechados directamente por el cultivo, el resto se perdió fundamentalmente por escurrimiento superficial y por percolación profunda.

Cuando un sistema de riego presurizado funciona en el rango alto de eficiencias, sobre 90%, es muy conveniente preocuparse en detalle de los coeficientes para determinar la evapotranspiración...
del cultivo (\(K_b\) y \(K_c\)). Un ajuste de coeficiente individual para condiciones específicas puede originar ahorro de agua, disminución de los costos de operación y un mejoramiento de las condiciones de suelos que afectarán positivamente el desarrollo del cultivo.

En condiciones de riego presurizado, también se debe considerar el área de sombra de la copa del árbol en relación con el marco de plantación, expresado en porcentaje (%). Esto tiene especial importancia en huertos jóvenes, donde el tamaño del árbol está lejos de alcanzar su pleno desarrollo. Cuando el área sombreada es igual o superior al 90%, se considera el 100% de la evaporación del cultivo, cuando es menor de 90%, utilizar los valores del Cuadro 15.

Castro et al., 1996 (4), facilita el procedimiento de cálculo y sugiere utilizar un coeficiente de área sombreada igual a 1,0 cuando el porcentaje de sombreado es superior a 50.

El coeficiente de sombreado \(K_s\), es función del tamaño de los árboles y de la densidad de las plantas (árboles por hectárea). El área sombreada (\(A_s\)) se calcula multiplicando la proyección de la copa sobre el suelo por la densidad de plantas (Ecuación 3).

\[
A_s(\%) = \frac{3.14 \times D^2 \times N}{400}
\]

Donde:
- \(A_s(\%)\) = Porcentaje de área sombreada
- \(D\) = Diámetro de la copa (m)
- \(N\) = Número de árboles por hectárea.
- 400 = Constante para transformación de unidades

Cuadro 15. Valores de coeficientes de sombreado (\(K_s\)) en función del % de área sombreada (\(A_s\))

<table>
<thead>
<tr>
<th>Porcentaje de sombreado ((A_s))</th>
<th>Coeficiente (K_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>menos de 10</td>
<td>0.12</td>
</tr>
<tr>
<td>20</td>
<td>0.24</td>
</tr>
<tr>
<td>30</td>
<td>0.35</td>
</tr>
<tr>
<td>40</td>
<td>0.47</td>
</tr>
<tr>
<td>50</td>
<td>0.59</td>
</tr>
<tr>
<td>60</td>
<td>0.70</td>
</tr>
<tr>
<td>70</td>
<td>0.82</td>
</tr>
<tr>
<td>80</td>
<td>0.94</td>
</tr>
<tr>
<td>90</td>
<td>1.00</td>
</tr>
<tr>
<td>100</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Adicionalmente se debe corregir los valores de K_s en función del grado de enmalezamiento del huerto. Las malezas también actúan como fuente de pérdida de agua por transpiración. Un huerto de árboles pequeños fuertemente enmalezado, es equivalente en el consumo de agua a un huerto adulto sin malezas, en ambos casos, el valor de K_s es 1,0.

Ejercicio: se tiene un huerto joven (un año), cuyo diámetro de copa de los árboles es 0,8 metros. El marco de plantación es 8x8 m. ¿Cuánto es el porcentaje de área sombreada y cuál es la Evapotranspiración del cultivo si el huerto está libre de malezas?

Solución:

$$\text{As (\%)} = \frac{3,14 \times (0,8)^2 \times 156}{400}$$

$$\text{As (\%)} = 0,78$$

Respuesta: el área sombreada es 0,78%, por lo tanto se debe utilizar un coeficiente de sombreado K_s de 0,12 (Cuadro 15). Si anteriormente, la ETc calculada fue 2,02 mm/día, ahora, la ETc corregida por el coeficiente de sombreado es 2,02 x 0,12. La respuesta es 0,24 mm/día. Si se asume que el desarrollo de raíces no es más allá de 0,5 metros desde el tronco, el consumo de agua de la planta joven será aproximadamente 200 cc de agua por día.

Cuándo regar

Respecto a cuándo regar, la pregunta hace referencia a la frecuencia de riego, es decir, cada cuánto tiempo se debe regar.

Para determinar la frecuencia de riego, se debe considerar la evapotranspiración del cultivo y la capacidad de retención de humedad del suelo.

El suelo tiene una cierta capacidad de almacenamiento de agua y está dado por la textura del suelo y la profundidad del mismo, el grado de pedregosidad y la profundidad de arraigamiento del cultivo. Si el suelo tiene una profundidad mayor que el límite inferior de crecimiento de raíces, sólo se considera como reservorio el agua disponible en la profundidad de raíces.

Los suelos de texturas arcillosas tienen mayor capacidad de retención de humedad que los suelos de textura intermedia (franco limoso o franco arenoso fino) y los arenosos tienen menor capacidad de retención. En el Cuadro 16 se señala la altura de retención de humedad para diferentes texturas de suelo.
Cuadro 16. Capacidad de retención de humedad para diferentes texturas de suelo.

<table>
<thead>
<tr>
<th>Textura del suelo</th>
<th>Humedad total utilizable (mm/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arenoso</td>
<td>80 (70–100)</td>
</tr>
<tr>
<td>Franco arenoso</td>
<td>120 (90–150)</td>
</tr>
<tr>
<td>Franco</td>
<td>170 (140–190)</td>
</tr>
<tr>
<td>Franco-arcilloso</td>
<td>190 (170–220)</td>
</tr>
<tr>
<td>Arcillo-arenoso</td>
<td>230 (180–230)</td>
</tr>
<tr>
<td>Arcilloso</td>
<td>230 (200–250)</td>
</tr>
</tbody>
</table>

Entre paréntesis se presenta el rango de valores posibles de encontrar.
Fuente: Israelsen y Hansen, 1973

Si un suelo, de textura arenosa de 1 metro de profundidad estuviese humedecido completamente, la capacidad de almacenamiento aproximada es de 80 mm/metro, es decir 80 litros por m² de superficie. Si el suelo tiene sólo 60 cm de profundidad, la capacidad de almacenamiento se reduce a 48 litros/m².

La ecuación para determinar la frecuencia de riego es:

\[
FR = \frac{Hs (\text{mm})}{\text{ETc (mm/día)}} \quad (4)
\]

Donde:
- \(Fr \) = Frecuencia de riego (días)
- \(Hs \) = Altura de agua almacenada en el suelo (mm)
- \(\text{ETc} \) = Evapotranspiración del cultivo (mm/día)

Ejercicio: un suelo tiene una capacidad de almacenamiento de 55 mm/m y la evapotranspiración del cultivo durante una determinada época del año es 4 mm/día ¿Cuál debe ser la frecuencia de riego?

Solución:

\[
FR = \frac{55 \text{ mm}}{4 \text{ mm/día}}
\]

\[
FR = 13 \text{ días}
\]

Respuesta: el riego se debe dar cada 13 días.
En el ejemplo, se ha asumido que todo el suelo se ha mojado uniformemente hasta una profundidad de 60 cm. Esto es posible de lograr regando por bordes, surcos o tendido. Cuando se utiliza riego por tazas individuales en donde no todo el suelo se moja en profundidad, la capacidad de almacenamiento del suelo se reduce proporcionalmente respecto al área mojada. Así, si sólo el 50% del suelo se moja, la capacidad de almacenamiento se reduce a la mitad, y manteniendo las condiciones del ejemplo anterior, el tiempo entre riegos se reduciría a 7 días.

En riego por goteo, sólo una fracción del suelo se humedece, por lo tanto, la capacidad de almacenamiento de humedad se reduce significativamente, bajo estas condiciones, la frecuencia de riego debe ser alta, entre 1 y 2 días como máximo en época de alta demanda hídrica.

Es posible hacer un diseño de riego por goteo donde el área mojada sea superior al 50% y así aumentar el número de días entre riegos. Esta solución involucra utilizar mayor cantidad de laterales y emisores por hectárea, mayor caudal de trabajo y por consiguiente mayor diámetro de tuberías y tamaño de bomba, lo que puede duplicar o triplicar el costo de instalación de un sistema de riego presurizado, haciéndolo inviable. Esa es una de las causas que obliga a los diseñadores de equipos a implementar diseños con un 30% del área sombreada de suelo como mínimo. Al disminuir en esa magnitud la capacidad de almacenamiento de agua, obliga a regar todos los días en verano.

El criterio de humedecer en forma efectiva el 30% del área sombreada del árbol es de carácter general, que en lo posible debe ser respetado hasta que surjan nuevos antecedentes que lo modifiquen. En relación con esto último, en evaluaciones realizadas por INIA en el valle de Huasco, en una plantación de olivos de 40 años de edad, espaciados a 10x10 m, sobre suelos franco arenosos, se verificó que cuando la superficie de mojamiento fue inferior al 30%, las producciones fueron bajas con relación a superficies mojadas de 30%. Para lograr el grado de mojamiento deseado, es necesario considerar la utilización de dos o tres hileras de laterales en huertos plantados a baja densidad (8x8 a 10x10 m). Pastor et al. (1998) encontraron una buena correlación entre el número de goteros por planta y la producción expresada en kilos/árbol.

La menor capacidad de retención de humedad también obliga a mantener los equipos en buenas condiciones. Una suspensión del riego por dos semanas en época de verano puede tener un efecto significativo en la producción debido al estrés hídrico a que es sometida la planta. En sistemas de riego localizados, gran parte de las raíces se concentran en no mas allá de un metro de distancia medidos desde el tronco (Alegre et al., 1999) y a una profundidad entre 40 y 60 cm (Fernández et al., 1993 y Merva, 1995). La alta densidad de raíces en este volumen de suelo agota rápidamente el agua almacenada en él, produciendo un estrés hídrico de mayor magnitud que si el huerto fuese regado por métodos gravitacionales.

Recomendaciones generales

El olivo es un cultivo muy resistente a la falta de agua. Frente a un año con poca disponibilidad de agua, el árbol no muere, pero sí reduce significativamente su crecimiento y producción.

Durante la temporada, el olivo puede requerir tanta agua como cualquier otro frutal, del orden de 6.000 a 8.000 m³/año/temporada. Debido a la diferencia de eficiencias de aplicación entre
métodos de riego, la cantidad de agua a aplicar utilizando métodos de riego gravitacionales es del orden de 12.000 a 24.000 m³/ha/año. En el caso de riego por goteo, las cantidades bajan entre 6.500 y 10.000 m³/ha/año.

Para lograr buen crecimiento del árbol, y altas producciones en el mediano y largo plazo, es necesario aplicar efectivamente las cantidades de agua señaladas, bien distribuidas a lo largo del año de acuerdo a las condiciones atmosféricas imperantes y a las condiciones fisiológicas del cultivo.

El método de riego a utilizar en un huerto de olivos, cualquiera que sea, debe ser manejado apropiadamente para reducir el estrés hídrico en las plantas. En sistemas de riego gravitacional, se debe considerar las propiedades físicas del suelo, los caudales disponibles (cantidad y frecuencia) y la capacitación adecuada del personal para realizar una buena operación del sistema.

Para lograr altas eficiencias, se debe utilizar sistemas de riego localizados y regar todos los días. Especial cuidado se debe tener en el mantenimiento del equipo para obtener altos coeficientes de uniformidad y disminuir los riesgos de fallas.

Bibliografía

Se entiende por poda todas aquellas operaciones que modifican la forma natural del árbol, dando vigor o restringiendo el desarrollo de sus ramas y que tienen como finalidad darle una forma adecuada y conseguir en el menor tiempo posible la máxima producción, así como renovar o restaurar parte o la totalidad del árbol.

Las prácticas de poda realizadas a lo largo de la vida de un olivar siempre deben equilibrar el crecimiento y la fructificación, no debilitar o envejecer prematuramente el árbol y ser de bajo costo. Para precisar la intensidad de la poda, e incluso la realización o no de la misma en un determinado año, se debe tener en cuenta la edad del huerto, cosecha del año anterior, el destino de la cosecha (mesa o aceite), la densidad de plantación y el tamaño de los árboles.

En lo fundamental, con la poda se pretende conseguir un mínimo de madera estructural con un gran número de ramillas jóvenes, de largo medio (20 a 30 cm), y que exista una permanente emisión de ellas. Además se busca crear espacios para la entrada de luz y ventilación.

Un antiguo proverbio mediterráneo dice: “Quien ara el olivar, le pide frutos; quien lo abona, se lo pide con insistencia; el que lo poda, le obliga a que se lo dé”.

Es probable que estas antiguas palabras resumen lo relevante de la poda para el olivo.

La intensidad de poda debe adaptarse a las diversas fases de la vida del árbol:

- En el período improductivo prácticamente no se poda. El objetivo en esta etapa es formar la estructura o armazón del árbol, para lograr un olivo equilibrado que soporte cosechas abundantes en el menor tiempo posible. Esto es lo que se conoce como poda de formación.

- En el período adulto se poda ligeramente. En esta etapa el objetivo es mantener el equilibrio entre una buena producción, de buena calidad, y un desarrollo vegetativo adecuado del árbol, alargando al máximo su período productivo y retrasado su decadencia. En definitiva lo que se realiza es una poda de producción.

- Por último, en el período de vejez se busca renovar o sustituir las ramas que muestran signos de decadencia o vejez, regenerándolas y haciéndolas más productivas, mediante podas intensas, pero espaciadas por períodos de tiempo relativamente largos para la reconstitución de la copa del árbol. Se denomina poda de renovación o rejuvenecimiento.
Podar de formación

La poda de formación se inicia en el vivero, donde el nuevo árbol permanece de ocho meses a no más de dos años, el que deberá crecer sólo a un eje. Lo ideal es llevar al lugar de plantación definitiva un olivo que tenga una altura entre 0,8 y 1,2 m, para luego continuar en terreno con su formación.

Una vez plantado en el terreno definitivo, se debe podar lo menos posible, pues de ello dependerá su temprana entrada en producción.

La poda de formación dependerá fundamentalmente del sistema de conducción a emplear. En este manual se abordarán fundamentalmente los sistemas de conducción más empleados: copa y monocono (eje central).

El sistema de copa es recomendado por la escuela española. Este sistema se acomoda al hábito natural de crecimiento de la mayoría de las variedades de olivo. En cambio el sistema de monocono, conocido en Chile como eje central, es más utilizado en Italia en las nuevas plantaciones de olivo de alta densidad, donde el árbol, debido a su baja tasa de crecimiento, es obligando, mediante podas sistemáticas, a mantener un eje principal, lo cual retrasa su entrada en producción.

Para decidir el sistema de conducción se debe considerar el hábito de crecimiento de la variedad, la densidad de plantación, la precocidad de producción y el nivel tecnológico del productor, así como también el clima y calidad del suelo.

Las variedades que tienen un hábito de crecimiento abierto, se adaptan mejor al sistema de copa; en cambio, las de crecimiento vertical o erecto se adaptarían mejor al sistema de monocono. En el Cuadro 17, se presenta el hábito de crecimiento de distintas variedades presentes en el país.

Las densidades bajas (menos de 100 árboles/ha), medias (entre 100 y 200 árboles/ha) y altas normales (entre 208 y 357), se adaptan bien al sistema de formación en vaso libre o en copa, debido a que requieren plantas de mayor volumen para aprovechar bien el espacio asignado dentro del marco de plantación. En cambio, con densidades mayores es mejor el sistema en monocono, debido a que los árboles ocupan un menor espacio.

Las variedades más precoces y productivas tienden a desarrollarse menos, por lo que admiten mayores densidades de plantación y, por lo mismo, se adaptan bien al sistema de monocono. El mejor ejemplo es la variedad Arbequina, que es la predominante en los sistemas de mayor densidad de plantación (superior a 1.000 plantas/ha).

Por último, hay que considerar el nivel tecnológico del agricultor. Para agricultores tradicionales, el sistema de formación en copa, en alta densidad (208 a 357 árboles/ha), tiene los menores costos de inversión y de mantención del huerto. Con sistemas más intensivos (sobre 400 árboles/ha) se logra anticipar la plena producción, pero a costos más altos de operación; incluso, en algunos casos es necesario recurrir a maquinaria especializada —como podadoras mecánicas y cosechadoras del tipo cabalgantes— para manejar las plantaciones.
<table>
<thead>
<tr>
<th>Variedades</th>
<th>Origen</th>
<th>Destino</th>
<th>Hábito de crecimiento</th>
<th>Precocidad</th>
<th>Vigor</th>
<th>Densidad de la copa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azapa</td>
<td>Chile</td>
<td>Mesa</td>
<td>Abierto</td>
<td>Precoz</td>
<td>Elevado</td>
<td>Espesa</td>
</tr>
<tr>
<td>Ascolana Tenera</td>
<td>Italia</td>
<td>Mesa</td>
<td>Ergido</td>
<td>Precoz</td>
<td>Elevado</td>
<td>Espesa</td>
</tr>
<tr>
<td>Manzanilla de Sevilla</td>
<td>España</td>
<td>Mesa</td>
<td>Abierto</td>
<td>Precoz</td>
<td>Bajo-medioc</td>
<td></td>
</tr>
<tr>
<td>Nocellara del Belice</td>
<td>Italia</td>
<td>Mesa</td>
<td>Llorón</td>
<td>Precoz</td>
<td>Medio</td>
<td>Media</td>
</tr>
<tr>
<td>Kalamata</td>
<td>Grecia</td>
<td>Mesa</td>
<td>Ergido</td>
<td>Media</td>
<td>Alto</td>
<td>Media</td>
</tr>
<tr>
<td>Cerignola</td>
<td>Italia</td>
<td>Mesa</td>
<td>Ergido</td>
<td>Precoz</td>
<td>Medio</td>
<td>Media</td>
</tr>
<tr>
<td>Nabali</td>
<td>Jordania</td>
<td>doble</td>
<td>Abierto</td>
<td>Media</td>
<td>Medio</td>
<td>Media</td>
</tr>
<tr>
<td>Arbequina</td>
<td>España</td>
<td>Aceite</td>
<td>Abierto</td>
<td>Precoz</td>
<td>Alto</td>
<td>Media</td>
</tr>
<tr>
<td>Biancolilla</td>
<td>Italia</td>
<td>Aceite</td>
<td>Abierto</td>
<td>Media</td>
<td>Elevado</td>
<td>Clara</td>
</tr>
<tr>
<td>Coratina</td>
<td>Italia</td>
<td>Aceite</td>
<td>Abierto</td>
<td>Precoz</td>
<td>Medio</td>
<td>Espesa</td>
</tr>
<tr>
<td>Frantoio</td>
<td>Italia</td>
<td>Aceite</td>
<td>Llorón</td>
<td>Precoz</td>
<td>Medio</td>
<td>Media</td>
</tr>
<tr>
<td>Leccíno</td>
<td>Italia</td>
<td>Aceite</td>
<td>Llorón</td>
<td>Precoz</td>
<td>Elevado</td>
<td>Espesa</td>
</tr>
<tr>
<td>Picual</td>
<td>España</td>
<td>Aceite</td>
<td>Abierto</td>
<td>Precoz</td>
<td>Medio</td>
<td>Espesa</td>
</tr>
<tr>
<td>Liguria</td>
<td>Chile</td>
<td>Aceite</td>
<td>Abierto</td>
<td>Media</td>
<td>Elevado</td>
<td>Espesa</td>
</tr>
<tr>
<td>Barnea</td>
<td>Israel</td>
<td>Doble</td>
<td>Ergido</td>
<td>Precoz</td>
<td>Elevado</td>
<td>Clara</td>
</tr>
<tr>
<td>Empeltre</td>
<td>España</td>
<td>Doble</td>
<td>Ergido</td>
<td>Tardía</td>
<td>Medio</td>
<td>Espesa</td>
</tr>
<tr>
<td>Itrana</td>
<td>Italia</td>
<td>Doble</td>
<td>Ergido</td>
<td>Media</td>
<td>Elevado</td>
<td>Espesa</td>
</tr>
</tbody>
</table>

Fuente: Barranco et al., 2000

Poda de formación en vaso libre o copa

Una vez realizada la plantación (en primavera), se eliminan los brotes emergidos directamente desde el tronco a menos de 0,8 m desde el suelo, y no se realiza ningún otro tipo de intervención hasta el principio del verano siguiente a la plantación. Durante ese tiempo se debe procurar que las plantas queden siempre bien sujetas al tutor y en posición vertical. La eliminación de los brotes que emergen del tronco bajo los 0,8 m, debe realizarse cuando se encuentran en estado herbáceo, lo cual reduce la posibilidad de nuevas emisiones de brotes en aquel sector. Si los brotes están demasiado lignificados se necesitan tijeras o cortaplumas para cortarlas, lo que indica que se ha intervenido demasiado tarde; de todos modos, es imprescindible eliminarlos cuanto antes.

A partir del verano, y cada 1 ó 2 meses, se debe realizar un rápido repaso de poda, efectuando las siguientes acciones:

- Revisar, reponer y aumentar el número de ataduras del tutor, manteniendo siempre la planta en posición vertical, hasta una altura de 1,2 m, sobre esa altura se deja sin ataduras, sin importar que el ápice se doble, lo cual es una situación deseada para perder la dominancia apical.
Eliminar los chupones y ramas bajas, insertas por debajo de la futura cruz, o lugar donde se insertarán las ramas madres, que se situará al menos a 0,7 m sobre el suelo.

Una vez eliminadas todas las ramillas bajo los 0,8 m, no se debe realizar ningún despunte, pues, de lo contrario, se favorecería la emisión de un gran número de ramillas muy próximas.

Posteriormente, una vez que las plantas tengan su primera producción, se irán perfilando las dos o tres ramas más vigorosas y de buena ubicación e inserción, que serán las futuras ramas madres, pero sin realizar todavía ningún tipo de intervención.

Vigilar que las ataduras o el propio tutor no estrangulen o provoquen heridas a las plantas, eliminando dichas ataduras y reponiéndolas cada cierto tiempo si no se ha empleado material degradable.

Foto 24. Formación en copa de un olivo de dos años, plantado a 8x4 m.

De acuerdo a experiencias en plantaciones de olivo en el Centro Experimental Huasco, la mejor ubicación de los tutores es contraria a la dirección predominante del viento, pues es deseable que haya una emisión de ramillas enfrentando al viento y el tutor, por la cara en contacto con el tallo del olivo, evita la emisión de nuevos brotes. En este caso la amarra debe ser fuerte para evitar el roce permanente con el tallo de la planta.

En resumen, la estructura de árbol propuesta es la siguiente:

- Planta de un solo tronco, vertical, con altura de cruz entre 0,8 y 1,2 m desde la superficie del suelo.
- Copa armada sobre un máximo de tres ramas principales, pueden ser dos que se abren a su vez en dos secundarias.
- No se debe despuntar el árbol. Sobre los 1,2 m el eje central crece sin ataduras, siendo doblada por el viento, con lo que se pierde la dominancia apical.
Este sistema de poda se basa fundamentalmente en manejar el árbol de acuerdo al hábito de crecimiento natural del olivo. Esto es, favoreciendo el desarrollo de ramas abiertas mediante la mínima intervención de poda evitando la prolongación de la juventud de un olivo recién plantado (Foto 24 y 25).

Poda de formación en monocono

La forma denominada monocono, es similar a la formación con eje central de las plantaciones frutales. Las ventajas ofrecidas por esta forma de conducción son las siguientes:

- Permite menores distancias de plantación, por lo cual es el sistema más empleado en las plantaciones de más de 400 árboles/ha.
- Es una forma relativamente libre, siendo preciso un mínimo de poda, sobre todo en el período improductivo.
- Es una forma pensada para aumentar la eficacia del vibrador de troncos, en la operación de derribo de frutos en cosecha mecánica de la aceituna.
- A igualdad de volumen con la forma esférica, se obtiene, teóricamente, una mayor superficie externa de fructificación iluminada, y la productividad está íntimamente ligada a dicha superficie externa de fructificación.

La forma en monocono se obtiene partiendo de plantas jóvenes (menos de dos años), que tengan una altura entre 0,7 y 1 m, formadas en vivero con un solo eje central, sin descabezarse, y con ramificaciones laterales distribuidas a lo largo de todo el tronco y en todas las direcciones.

Se debe utilizar un tutor robusto, de 2 m de alto, que sea capaz de sostener la planta en posición vertical, hasta que el tronco de la propia planta pueda mantenerse.

En todo momento es fundamental que el ápice vegetativo (prolongación del tronco o cima), se mantenga vertical, ya que de ello va a depender el éxito de este tipo de formación. Si el ápice se daña, se sustituirá inmediatamente por otra rama subyacente vigorosa, fijándolo verticalmente al tutor.

Se deben realizar podas correctivas de la formación del árbol, en las que se procurará que el ápice domine a las otras ramas, manteniendo siempre una forma cónica, tipo piramidal.

Capítulo 7: Poda
Durante el primer verano se eliminan las ramificaciones que crecen bajo los 0,3 m, con el objetivo de favorecer el crecimiento en altura. Si se forman chupones en la proximidad de las inserciones de las ramas principales —cosa que ocurre con frecuencia en las variedades vigorosas y péndulas—, es necesario eliminarlos para favorecer el crecimiento armonioso de la copa, evitando competencias con el ápice. Al final del primer año podrá apreciarse la forma cónica del árbol.

El segundo y tercer año, las podas se reducen al mínimo, limitándose a la eliminación de ramas muy bajas (40 a 50 cm del suelo) y a los eventuales brotes interiores verticales (chupones), que puedan competir con el ápice, el cual deberá dominar siempre a las ramas laterales. Se procurará que las ramas emergidas a partir del eje central se dispongan de forma helicoidal a lo largo de dicho eje, de modo que se optimice el aprovechamiento de la luz. Al final de este período la forma cónica será cada vez más evidente.

Cuando el tronco del árbol sea capaz de sostenerlo, se elimina el tutor y la poda se limitará a la eliminación de ramas poco vigorosas y a reducir aquellas de excesivo vigor.

En este momento, pueden eliminarse las ramificaciones bajas hasta una altura sobre el suelo de 0,80 a 0,90 m, ya que no interesa conservarlas, debido a que estarán sombreadas por la copa.

Poda de producción

Es aquella que se practica para mantener un nivel productivo estable en la etapa de máxima producción, prolongándola por muchos años.

Una vez concluida la fase de formación de los olivos, si ésta ha sido correcta, es aconsejable intervenir muy poco con la poda. Durante este período los olivos bien cultivados deben mantener una alta relación hoja–madera, es decir, al ojo del observador debe predominar la presencia de hojas sobre ramillas descubiertas, por lo que las intervenciones de poda deben tratar de mejorar la iluminación dentro de la copa, para aumentar la producción, mejorar la calidad de los frutos y facilitar las operaciones de cosecha.

Poda de producción de conducción en copa

En el sistema de copa, la poda de producción consiste en mantener ramillas productivas vigorosas (de 20 a 30 cm), en lugares bien iluminados y de fácil cosecha. Estas ramillas se ubican en la estructura base del árbol. El objetivo es reemplazar ramillas de más de tres años, fundamentalmente.

Los cortes de poda deben tender a la eliminación de ramillas completas, y, siempre que se pueda, se debe cortar por su inserción con las de orden inferior, suprimiendo los chupones grandes, poco productivos, que tienden a dominar y sombrar las ramas inferiores. Se deben dejar las ramillas que crecen sobre madera gruesa, la cual las protege de quemaduras de sol.

Se debe evitar el crecimiento de ramillas de cuarto orden, es decir, de ramillas nacidas sobre ramas de más de tres años de edad, que crecen en espacios reducidos y son muy débiles, y las ubicadas en las zonas bajas, interiores y mal iluminadas, cercanas al suelo.
La intensidad de este tipo de poda dependerá de la cosecha esperada. Es así como en años que se espera una gran cosecha, conviene realizarla de forma más intensa, constituyéndose así en un raleo de ramillas productivas, lo que se traducirá en un ajuste de la carga para la siguiente temporada, mejorando la calidad de la producción, disminuyendo el añerismo y estimulando un mejor desarrollo de los nuevos brotes.

Poda de producción en conducción monocono

En todas la podas se debe procurar que el ápice domine a las ramas que componen el árbol y que se mantenga la forma cónica.

Una vez que se alcanza un 70% del desarrollo final, aproximadamente 3,5 m de altura, la poda se limita a eliminar las ramas poco vigorosas.

Mientras en el período juvenil la actividad vegetativa es mayor que la productiva, en que el árbol crece en tamaño rápidamente, en el período adulto se incrementa la actividad productiva, alcanzándose un equilibrio entre crecimiento y fructificación, que debe ser mantenido durante la vida del olivar.

En esta etapa, además de respetar el ápice, la poda debe conseguir que las ramas laterales tengan forma semicónica y se dispongan helicoidalmente alrededor del tronco, con longitudes decrecientes desde la base al ápice, de modo que predomine en el tiempo este tipo de formación. Ninguna prolongación de las ramas laterales deberá competir con el ápice, pues de lo contrario se perderá el efecto dominante del ápice.

El árbol, al final de su formación, alcanzará una altura no superior a los 5 metros. Si sobrepasa dicha altura, debe reducirse efectuando un corte de retorno sobre una rama vertical y acortando proporcionalmente las ramas laterales. Este tipo de poda no debe ser favorecida por fertilización, es más, se deberá reducir o eliminar toda aplicación de nitrógeno.

Poda de rejuvenecimiento o renovación

Este tipo de poda se realiza en árboles que se encuentran en período de producción decreciente, la que puede ocurrir a partir de los 20 o 40 años de edad, según el manejo agronómico que se les haya dado.

El olivo que requiere este tipo de poda es aquel que presenta las hojas más pequeñas, de colores claros, con crecimiento de ramillas muy débiles (internudos cortos y delgados), baja producción y, en algunos casos, con desfoliación parcial del árbol y que, además, presente un añerismo más acentuado que lo normal.

Otra característica notoria de los árboles envejecidos es su baja relación hoja/madera, es decir, hay poca hoja, notándose claramente abundancia de ramillas sin hojas, y el centro de su copa hueco, es decir, sin hojas.

Existen dos maneras de afrontar el rejuvenecimiento del olivo mediante poda. Una que corresponde a un corte drástico (poda tipo “afraillado”), suprimiendo todo el follaje y otra, más equilibrada, que se hace eliminando un cuarto a un tercio de la copa del árbol (poda continua o tipo “Jaén”).

Capítulo 7: Poda
La decisión de optar por uno u otro tipo de poda de rejuvenecimiento se basa primero, en el estado nutricional y sanitario del árbol, pues si se encuentra muy debilitado, lo que normalmente está asociado a problemas fitosanitarios, es recomendable una poda drástica. Por el contrario, si la causa de las bajas producciones es el excesivo sombreado, se deberá optar por la poda continua tipo Jaén.

Poda continua o tipo jaén

Este tipo de poda corresponde a la eliminación parcial de la copa, la que debe ser practicada en aquellos árboles que muestren una capacidad de recuperación vigorosa. Se comienza con la selección, y corte desde su base, de aquella rama de crecimiento erecto, que impida la penetración de luz hacia el interior de la copa. En la Figura 9 se presenta el esquema de la metodología de esta poda.

![Figura 9. Poda de recuperación tipo jaén.](image)

La poda tipo jaén se repetirá durante todo el ciclo productivo del árbol, de manera de ir renovando cada tres o cuatro años, una de las ramas madre que tenga más de 15 años (Foto 26).

![Foto 26. Izquierda, apertura de copa con corte basal de ramas erectas. Derecha, resultado a los cuatro años: una copa de área productiva máxima y de poca altura.](image)
La reducción de la producción se nota muy poco al principio. En el primer año esta puede ser de un 25% menos. Sin embargo a partir del segundo año, la producción se ve incrementada considerablemente, pues la nueva rama comienza su ciclo productivo en forma creciente.

Cuando se han reemplazados las cuatro ramas madres originales, la primera tendrá nueve años. Luego el objetivo del rejuvenecimiento es tener ramas de edad no superior a los 20 años, para lograr una producción estable en el tiempo.

Poda en cabeza o tipo afraílado

Cuando hay árboles muy debilitados y con una altura de cruz muy alta (sobre 1,5 m), conviene realizar una poda más drástica, denominada en cabeza o afraílado (Figura 10). Consiste básicamente en decapitar un árbol a la altura de 1 metro, eliminando todo el follaje, en invierno, después de la cosecha. Los cortes deben ser protegidos con pastas especiales que contengan funguicidas e insecticidas.

![Figura 10. Esquema de poda de recuperación “afraílado”](image)

En zonas de abundante humedad ambiental (neblinas o lluvias) el corte debe hacerse en bisel, para evitar la acumulación de agua en la superficie del corte, y el consiguiente daño por hongos.

A fines de primavera —dos a y tres meses después de realizada la poda—, la brotación será abundante, con un gran número de ramillas en distintos ángulos. Cuando los brotes alcanzan longitudes superiores a 20 cm se eligen tres o cuatro ramas definitivas. Ellas deben estar bien ubicadas; lo ideal es en diagonal a las líneas de plantación. Las ramas seleccionadas no deben ser ni muy erectas ni muy inclinadas, más bien deben tener una posición intermedia entre ambas, para evitar que el árbol crezca demasiado en altura, o, por el contrario, se desganchen con facilidad.

81
Es importante que en este período no exista circulación de animales por el huerto, pues cualquier roce con los brotes en crecimiento los desganchará, perdiéndose el esfuerzo realizado.

Una vez elegidas las ramas madres, estas no deben ser podadas. Sin embargo, cualquier ramilla o chupón que crezca desde el tronco o desde su base es recomendable eliminarlo lo antes posible, concentrando la fuerza del árbol sobre las ramas definitivas (Foto 27).

![Foto 27. Poda afilado. Izquierda, eliminación de la copa a 1 metro de altura. Derecha, Rejuvenecimiento de la copa dos años después de practicada la poda.](image)

Una pronta selección y aclareo de ramas madres permitirá formar ramas secundarias lo más cercana al tronco, evitando así el desarrollo en altura del nuevo crecimiento.

Cuando el árbol que se desea podar presenta escaso crecimiento vegetativo, es necesario, junto a la poda, realizar mejoras en el riego y en la fertilización, aunque, normalmente no es necesaria la fertilización pues el árbol podado logra su equilibrio natural entre la parte aérea y raíces.

En ramas gruesas es importante realizar cortes limpios. Idealmente se recomiendan cortes con sierras o motosierras, dejando una cara lisa, sin astillas.

Al realizar la apertura de copa, en condiciones de alta insolación, es recomendable pintar la corteza de las ramas gruesas expuestas a los rayos solares, para evitar daños por golpes de sol en la madera. El pintado se hace con látex blanco, inmediatamente después de la remoción de la rama vecina.

Finalmente, los cortes gruesos de poda, especialmente los horizontales deben ser pintados con pasta especial para poda (Podexal super, Pasta poda TPN50), previniendo así el ataque de hongos de la madera.
En resumen, como orientación general para decidir el tipo de poda de renovación, en árboles con copa muy alta, la poda en cabeza es más recomendable; en cambio, en árboles con la cruz entre 0,8 y 1,5 m, es mejor realizar la poda continua o Jaén.

Resultados de experiencias realizadas por INIA en el valle de Huasco, reflejan la importancia de la poda de rejuvenecimiento de antiguos olivares. En el Cuadro 18 se presentan resultados obtenidos en podas realizadas en olivares de más de 40 años de edad.

Cuadro 18. Evaluación de la producción en dos tipos de poda de rejuvenecimiento practicadas en olivares de 40 años de edad en variedades Azapa y Empeltre, entre las temporadas 1998/99 y 2001/02

<table>
<thead>
<tr>
<th>Tipo de poda</th>
<th>Variedad</th>
<th>Producción (ton/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1998/99</td>
</tr>
<tr>
<td>Testigo*</td>
<td>Sevillano</td>
<td>2,4</td>
</tr>
<tr>
<td></td>
<td>Liguria</td>
<td>7,4</td>
</tr>
<tr>
<td>Jaén</td>
<td>Sevillano</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td>Liguria</td>
<td>6,7</td>
</tr>
<tr>
<td>Afrillado</td>
<td>Sevillano</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Liguria</td>
<td>-</td>
</tr>
</tbody>
</table>

*Testigo sin poda

Los árboles con poda afrillado obviamente en el primer año no tuvieron producción, debido a la eliminación de todo el follaje. Sin embargo, al segundo año comenzó la producción, manteniéndose en ascenso sostenido durante los años siguientes de la evaluación. La poda tipo "Jaén", a partir del primer año superó considerablemente la producción de los otros tipos de poda, lo que es coherente con ese viejo refrán que en su última frase dice "quien poda un olivar, lo obliga a que dé frutos".
Bibliografía

CAPÍTULO 8
Fertilización

Carlos Sierra B.
Antonio Ibacache G.
Francisco Tapia C.

La fertilización del olivo, al igual que la de cualquier especie frutal, depende de diferentes factores que conforman el sistema productivo del huerto. Las relaciones específicas entre suelo, agua, planta y clima de cada huerto determinarán, finalmente, la fertilización a aplicar. La concentración óptima de macronutrientes, nitrógeno, fósforo y potasio en hojas colectadas en verano es menor que en otros frutales como la vid, sugiriendo que el requerimiento y la demanda por nutrientes minerales por el olivo es menor que esa especie. El olivo es una especie originaria de la zona mediterránea, que se caracteriza por desarrollarse en un ambiente moderadamente árido, con suelo de pH normalmente neutro a moderadamente alcalino. Si se compara con otros frutales, es un árbol que tolera y prospera bien en suelos marginales. Desde el punto de vista físico del suelo, el olivo no es una planta exigente, aún cuando prefiere suelos de textura media a franca arenosa. Se adapta bien a contenidos moderadamente altos de salinidad, tolera más de 6,0 dS/m de conductividad eléctrica en pasta saturada, en el área de raíces. Además, tolera bien altos contenidos de carbonatos y una reacción del suelo, moderadamente alcalina, aún cuando su comportamiento agronómico será mejor a pH menor de 8,0.

Demanda de nutrientes

La demanda de nutrientes minerales por el olivar estará determinada principalmente por la biomasa vegetal formada anualmente, la cual a su vez, será función de la edad de los árboles y del marco de plantación. Sin embargo, diversos otros factores de manejo deben ser optimizados para alcanzar altos rendimientos en árboles adultos. Según la variedad será necesario incorporar polinizantes y además manejar adecuadamente la poda, el riego, las enfermedades y plagas. En huertos adultos será importante verificar el estado de crecimiento de raíces, el que puede ser afectado principalmente por nematodos y por la escasa porosidad media del suelo, la que puede disminuir la humedad disponible y el oxígeno en el suelo.

La demanda de nitrógeno y potasio es mayor que la de fósforo (Cuadro 19). La extracción de nutrientes dependerá del rendimiento alcanzado y edad de los árboles. Además, el efecto de consumo de lujo determina una absorción adicional no requerida por el árbol que, en muchos casos, puede sobrestimar la fertilización aplicada al huerto.
Cuadro 19. Extracción de macronutrientes por el olivo, según diferentes fuentes

<table>
<thead>
<tr>
<th>Fuente</th>
<th>País</th>
<th>N</th>
<th>P₂O₅ (g/árbol)</th>
<th>K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morettini</td>
<td>Italia</td>
<td>144</td>
<td>77</td>
<td>255</td>
</tr>
<tr>
<td>Pantanelli</td>
<td>Italia</td>
<td>276</td>
<td>142</td>
<td>488</td>
</tr>
<tr>
<td>Bouat</td>
<td>Francia</td>
<td>300</td>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td>CEBAC</td>
<td>España, Sevilla</td>
<td>360</td>
<td>90</td>
<td>507</td>
</tr>
<tr>
<td>Jaen</td>
<td>España, Rdto. 30 kg/árbol</td>
<td>310</td>
<td>75</td>
<td>560</td>
</tr>
<tr>
<td>Rey – Sfax</td>
<td>Túnez, Rdto. 47 kg/árbol</td>
<td>579</td>
<td>68</td>
<td>503</td>
</tr>
<tr>
<td>Hutter</td>
<td>Túnez</td>
<td>345</td>
<td>59</td>
<td>431</td>
</tr>
</tbody>
</table>

Suministro de nutrientes

El aporte de nutrientes disponibles para alcanzar el adecuado crecimiento del olivo es determinado a partir de la solución del suelo, en equilibrio con la fase sólida. Algunos elementos como el nitrógeno, azufre, parte del fósforo y el boro provienen de la mineralización de la materia orgánica. Otros elementos como el calcio, magnesio y potasio son liberados a la solución del suelo a partir de la fracción inorgánica. Es decir de los cationes intercambiados en la fracción coloidal.

El aporte de nitrógeno por el suelo, como se señaló, proviene de la mineralización de la materia orgánica, proceso bioquímico que es fuertemente afectado por la temperatura y humedad del suelo. Por lo tanto, el aporte de nitrógeno dependerá del contenido de materia orgánica del suelo y de las condiciones que permiten su adecuada mineralización. El suministro de fósforo, potasio, calcio y magnesio dependerá del contenido disponible en el suelo, el cual estará determinado por el contenido de arcilla y en menor medida por el historial de manejo del sitio específico.

Diagnóstico del estado nutricional

Análisis de suelo

El análisis de suelo y el análisis foliar deben considerarse como técnicas complementarias para lograr un óptimo diagnóstico del estado nutricional de un huerto de olivos.

El análisis de suelo es una técnica poco precisa para establecer un óptimo diagnóstico del estado nutricional de un huerto. Esto se explica porque los árboles son capaces de explorar los diferentes horizontes del suelo y además la acumulación de reservas les permite compensar la fluctuación anual de la demanda de nutrientes minerales. Sin embargo, un análisis químico de suelo completo, permite hacer una razonable estimación del potencial suministro de nutrientes.
Probabilidad de respuesta a la aplicación de nitrógeno
En el Cuadro 20 se presenta el contenido de nitrógeno total del suelo y su relación con la probable respuesta del olivar adulto a la aplicación de nitrógeno. La mayoría de los suelos de los valles transversales del norte presentan contenidos medios y bajos. Por lo tanto la probabilidad de respuesta a la aplicación de nitrógeno será moderada a moderadamente alta. Sin embargo, la respuesta efectiva estará determinada además por el rendimiento anual alcanzado y otros factores, como el óptimo crecimiento radicular y el riego.

Probabilidad de respuesta a la aplicación de fósforo
En el Cuadro 21 se presenta la relación entre el contenido de fósforo disponible (Olsen) y la probabilidad de respuesta a la aplicación de fósforo. Los suelos de la región comúnmente presentan niveles mayores de 10 ppm, por lo tanto la probabilidad de respuesta será baja. Este elemento es muy poco móvil en suelos de textura media y fina, por lo tanto, los contenidos marginales asociado a plantas con desarrollo radicular restringido pueden presentar una absorción limitada del nutriente. Es importante destacar que en experimentos de campo con la variedad Sevillano, creciendo en suelos con 19, 9 y 7 ppm de fósforo disponible detectado a 0-20, 20-40 y 40-60 cm de profundidad, respectivamente, no se encontró respuesta a la aplicación de fósforo al suelo. Sin embargo, en las temporadas siguientes la concentración de fósforo foliar decreció ligeramente en el tratamiento sin fósforo. (Sierra et al., 2002).

Probabilidad de respuesta a la aplicación de potasio
En el Cuadro 22 se aprecia el contenido de potasio de intercambio y la probable respuesta a la aplicación de este elemento. La mayor parte de los suelos de textura media de la zona presentan contenidos mayores de 150 ppm. Esto sugiere una baja probabilidad de respuesta en producción al potasio aplicado. Con estos niveles medios su respuesta podría manifestarse en el calibre de las aceitunas. Un ensayo de campo realizado en la variedad Sevillano y con niveles altos de potasio de intercambio en el suelo, de 434 y 295 ppm entre 0-20 y 20-40 cms de profundidad, no produjo ningún beneficio la aplicación de fertilizante potásico al suelo (Sierra et al., 2002).

Análisis foliar
El análisis químico de una muestra de hojas de los árboles de un huerto es lo que se conoce como análisis foliar. Este análisis permite detectar desequilibrios nutritivos con anterioridad a que aparezcan síntomas perjudiciales en las plantas.
En un olivar el análisis foliar es importante y se complementa con el análisis de suelo para diagnosticar deficiencias y toxicidades minerales. La composición química de una hoja refleja la disponibilidad de elementos minerales en el suelo, el adecuado suministro de agua de riego y la distribución y actividad de las raíces, entre los aspectos más relevantes. Las concentraciones deseables de los diferentes nutrientes han sido establecidas para el olivo y se presentan en el Cuadro 23. Los resultados de análisis foliar que entrega el laboratorio se comparan con esos valores estándar para determinar el nivel de deficiencia, suficiencia o toxicidad.
Cuadro 20. Contenido de nitrógeno (N) total en los primeros 30 cm de suelo y probabilidad de respuesta a la fertilización nitrogenada.

<table>
<thead>
<tr>
<th>Contenido de N total (%)</th>
<th>Categoría</th>
<th>Respuesta probable a la aplicación de N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferior a 0,05</td>
<td>Muy bajo</td>
<td>Alta</td>
</tr>
<tr>
<td>0,06-0,1</td>
<td>Bajo</td>
<td>Moderadamente alta</td>
</tr>
<tr>
<td>0,11-0,20</td>
<td>Medio</td>
<td>Moderada</td>
</tr>
<tr>
<td>Sobre 0,21</td>
<td>Alto</td>
<td>Baja</td>
</tr>
</tbody>
</table>

Nota: La relación C/N más adecuada debe variar entre 10-13, para lograr una mineralización neta óptima.

Cuadro 21. Contenido de fósforo disponible en los primeros 30 cm de suelo y probabilidad de respuesta a la fertilización fosfatada

<table>
<thead>
<tr>
<th>Contenido de P-disponible Olsen (ppm)</th>
<th>Categoría</th>
<th>Respuesta probable a la aplicación de fósforo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferior a 4</td>
<td>Muy bajo</td>
<td>Alta.</td>
</tr>
<tr>
<td>5 - 11</td>
<td>Bajo</td>
<td>Moderada.</td>
</tr>
<tr>
<td>12 - 24</td>
<td>Medio</td>
<td>Baja (aplicar de mantenimiento).</td>
</tr>
<tr>
<td>Sobre 25</td>
<td>Alto</td>
<td>Muy baja (no fertilizar).</td>
</tr>
</tbody>
</table>

Cuadro 22. Contenido de potasio de intercambio en los primeros 30 cms de suelo y probabilidad de respuesta a la fertilización potásica

<table>
<thead>
<tr>
<th>Contenido de potasio de intercambio (ppm)</th>
<th>Categoría</th>
<th>Respuesta probable a la aplicación de potasio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inferior a 60</td>
<td>Muy bajo</td>
<td>Alta (en rendimiento)</td>
</tr>
<tr>
<td>61-120</td>
<td>Bajo</td>
<td>Moderada (en rendimiento y calibre)</td>
</tr>
<tr>
<td>121-280</td>
<td>Medio</td>
<td>Baja (en calibre)</td>
</tr>
<tr>
<td>281-500</td>
<td>Alto</td>
<td>Muy baja o sin respuesta</td>
</tr>
</tbody>
</table>

Nota: estándares para suelos de textura media. En suelos arcillosos, los niveles de potasio considerados críticos deben incrementarse en un 30%.
Los valores críticos señalados en el Cuadro 23 provienen de hojas con pecíolo tomadas en el mes de enero, desde la posición media a basal de brotes del año.

Cuadro 23. Niveles críticos de nutrientes en hojas de olivo

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Unidad</th>
<th>Deficiente</th>
<th>Adecuado</th>
<th>Tóxico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrógeno</td>
<td>%</td>
<td>1,4</td>
<td>1,5-2,0</td>
<td>-</td>
</tr>
<tr>
<td>Fósforo</td>
<td>%</td>
<td>0,05</td>
<td>0,1-0,3</td>
<td>-</td>
</tr>
<tr>
<td>Potasio</td>
<td>%</td>
<td>0,4</td>
<td>Mayor que 0,8</td>
<td>-</td>
</tr>
<tr>
<td>Calcio</td>
<td>%</td>
<td>0,3</td>
<td>Mayor que 1</td>
<td>-</td>
</tr>
<tr>
<td>Magnesio</td>
<td>%</td>
<td>0,08</td>
<td>Mayor que 0,1</td>
<td>-</td>
</tr>
<tr>
<td>Manganese</td>
<td>ppm</td>
<td>-</td>
<td>Mayor que 20</td>
<td>-</td>
</tr>
<tr>
<td>Zinc</td>
<td>ppm</td>
<td>-</td>
<td>Mayor que 10</td>
<td>-</td>
</tr>
<tr>
<td>Cobre</td>
<td>ppm</td>
<td>-</td>
<td>Mayor que 4</td>
<td>-</td>
</tr>
<tr>
<td>Boro</td>
<td>ppm</td>
<td>19-150</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Sodio</td>
<td>%</td>
<td>-</td>
<td>Mayor que 0,2</td>
<td>-</td>
</tr>
<tr>
<td>Cloro</td>
<td>%</td>
<td>-</td>
<td>Mayor que 0,5</td>
<td>-</td>
</tr>
</tbody>
</table>

Se debe muestrear áreas no superiores a 6 hectáreas, considerando suelos uniformes en cuanto a textura, exposición y profundidad. También es importante incluir una sola variedad como unidad de muestreo. Cada muestra debe contener alrededor de 100 hojas tomadas de varios árboles distribuidos por todo el huerto. Es conveniente tomar de 2 a 4 hojas por árbol de brotes situados a la altura del hombro.

Fertilización en suelos del norte chico

Nitrógeno

La mayoría de la información existente sobre respuesta a la aplicación de fertilizantes en olivos corresponde principalmente a nitrógeno. La respuesta a este elemento se manifiesta en un mayor vigor de los árboles, los que adquirirían un color verde más intenso y mayor crecimiento de brotes. Los árboles deficientes en nitrógeno presentan un color verde pálido, particularmente en la variedad Sevillano. En árboles adultos, bajo riego convencional, la respuesta agroeconómica a nitrógeno alcanza a no más de 0,6 a 1,0 kg de N/ha. Esta dosis se asocia a rendimientos de 100 kg de fruta por árbol, es decir unas 10 ton/ha de fruta.

Para árboles jóvenes, se señalan dosis referenciales de nitrógeno en el Cuadro 24.
Cuadro 24. Dosis de nitrógeno por temporada y su equivalente en productos comerciales (urea y nitrato de amonio), para árboles de 1 a 6 años

<table>
<thead>
<tr>
<th>Año de crecimiento</th>
<th>Nitrógeno puro (g/árbol)</th>
<th>Dosis producto comercial (g/árbol)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Urea</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>174</td>
</tr>
<tr>
<td>4</td>
<td>160</td>
<td>348</td>
</tr>
<tr>
<td>5</td>
<td>320</td>
<td>696</td>
</tr>
<tr>
<td>6</td>
<td>430</td>
<td>935</td>
</tr>
</tbody>
</table>

Fósforo

En relación al fósforo, su carencia es poco frecuente según investigadores españoles. En suelos calcáreos la fertilización al suelo suele ser, a corto plazo, poco eficaz, pero con respuestas a largo plazo (Ferreira et al., 1986, citado por Pastor et al., 2000). Resultados preliminares obtenidos en la parte baja del Valle del Huasco en el cv. Seviliano, permiten señalar que no se ha observado respuesta al fósforo aplicado con niveles en el suelo de 19, 9 y 7 ppm de P disponible a 0-20; 20-40 y 40-60 cms de profundidad, respectivamente.

La escasa respuesta al fósforo por el olivo se explicaría por su bajo requerimiento a nivel foliar y a la gran exploración radicular que pueden hacer los árboles adultos. Sin embargo, un adecuado balance entre nutrientes primarios, nitrógeno-fósforo a nivel foliar debe ser considerado al momento de analizar y definir el programa de fertilización, esta situación es particularmente importante en riego localizado; con este sistema de riego es fácil provocar un desbalance en el área del bulbo.

Potasio

La fertilización con potasio puede ser requerida más frecuentemente, especialmente en árboles adultos que presenten rendimientos altos, con más de 8 ton/ha. En este caso el análisis foliar puede ser de gran ayuda. Contenidos menores a 0,8% de K foliar, de muestras colectadas en verano, indicarán la necesidad de abonar con este elemento. Contenidos marginales de potasio foliar, en árboles creciendo en suelos con un alto contenido de potasio indicarán problemas de escasa exploración radicular por efecto de nemátodos o mal manejo del riego (Pastor et al., 2000), señalan que debe evitarse que se produzcan deficiencias severas de este elemento a nivel foliar, pues su posterior recuperación se logra sólo después de varios años de fertilización continuada. En años de gran cosecha se debe monitorear su contenido foliar para determinar el estado nutricional con potasio, debido a la gran extracción que se alcanza con un alto rendimiento.
de fruta. Sin embargo, este nivel nutricional foliar dependerá igualmente de la reserva de potasio del suelo. En suelos moderadamente profundos y arcillosos el nivel de reserva será alto, sin embargo, su nivel crítico será más alto que en suelos franos a franco arenoso. En suelos de textura más gruesa su nivel crítico será menor, al igual que su reserva, por lo tanto se deberá fertilizar más frecuentemente, pero con una dosis menor.

Las enmiendas orgánicas, como estiércol de cabra deben ser consideradas como mejoradores de las condiciones físicas del suelo, como mayor retención de humedad, mejoramiento de la porosidad y, en consecuencia, un mayor arraigamiento de raíces. El aporte de nutrientes minerales será importante si la cantidad aplicada de estiércol es muy alta, más de 60 ton/ha de guano.

Calcio

No se ha observado síntomas de deficiencia de calcio en olivares comerciales. La inducción de síntomas de deficiencia en suelos arenosos en California provocó la muerte del ápice de los brotes, con el subsecuente crecimiento de muchos brotes laterales. También se produjo una reducción del crecimiento de las hojas más nuevas.

El calcio es absorbido desde la solución del suelo sólo a través de las puntas de las raíces nuevas. Por lo tanto, cualquier factor que limite el crecimiento de nuevas raíces (pobre aireación, bajas temperaturas, u otros impedimentos) puede reducir la absorción del nutriente y así inducir deficiencia. También las dosis moderadamente altas de nitrógeno, como urea aplicada vía fertirrigación, afectaron claramente la absorción de calcio en la variedad Sevillano, en suelo franco arcilloso del Valle del Huasco.

El calcio se mueve pasivamente a través de la corriente de transpiración, desde el suelo hasta los órganos superiores de las plantas. Así, una baja tasa de transpiración, la falta de agua o una alta concentración de sales de sodio en el suelo, pueden afectar negativamente la llegada de calcio a las hojas y frutos. Antes de pensar en corregir la deficiencia se debe tener claridad sobre la causa del bajo nivel del elemento en las hojas. Las aplicaciones foliares de nitrato de calcio y cloruro de calcio al 0,5%, pueden ayudar a corregir una posible deficiencia.

Manganeso

Se desconocen los síntomas de carencia de manganeso en olivos. En otros frutales (p. ej.: duraznero) la sintomatología típica es una clorosis intervenal en las hojas. Los suelos con valores altos de pH, sobre 7,0, presentan una baja disponibilidad de este nutriente. Las aspersiones foliares en primavera, de sulfato de manganeso al 0,2%, pueden corregir la deficiencia.

Boro

Se considera al olivo como una especie con altos requerimientos de boro. En general, la presencia de este micronutriente no es limitante en los suelos del norte chico, las eventuales deficiencias pueden ser causadas por la condición de falta de agua en el suelo y por un alto pH. La disponibilidad de boro en el suelo está regulada por el pH, en suelos moderadamente alcalinos su disponibilidad disminuye. Además, se encuentra en gran medida asociada a la materia orgánica.
y a las arcillas. Por lo tanto, los suelos arenosos, pobres en materia orgánica y con pH mayor de 7,8, pueden presentar un bajo suministro de este elemento. Cabe señalar que en experimento de campo realizado en el área de Nicolasa (Valle de Huasco) en la variedad Sevillano, con rendimiento de más de 120 kg/árbol, el contenido de boro foliar decreció a niveles críticos, en relación a los árboles sin fertilización con nitrógeno, fósforo y potasio, que sólo alcanzaron los 40 kg/árbol de fruta. Esto sugiere claramente que el suelo de un bajo contenido de materia orgánica y pH 8, no fue capaz de suministrar el nutriente (Sierra et al., 2002).

Zinc y Hierro

Ambos microelementos presentan una muy baja disponibilidad en los suelos del norte chico, especialmente a pH sobre 8,0. El hierro, a diferencia del zinc se encuentra en gran cantidad en el suelo.

En las condiciones de suelos de los Valles de Copiapó y Huasco, con un contenido moderadamente alto de carbonatos, la reacción del suelo (pH) es alcalina. Esto determina una muy baja disponibilidad, principalmente de hierro, manganeso, zinc y cobre. Para hacer más disponibles estos micronutrientes es necesario acidificar el medio, ya sea a través de la aplicación de azufre elemental y ácidos, como sulfúrico, fosfórico u otros. Otra alternativa es aplicar micronutrientes quelatados, los que tienen un alto costo. En el caso del hierro, se recomienda aplicar EDDHA-Fe, que son más estables a pH superior a 7,8.

Recomendación general de fertilización

De no contar con análisis de suelo o análisis foliar, en el momento oportuno, se da una recomendación general para árboles adultos en producción.

En árboles creciendo en condiciones normales y con adecuado sistema radicular, se sugiere aplicar 800 a 1000 g de nitrógeno por árbol. En el caso de fósforo, si no se ha aplicado durante más de 10 años, se debe incluir en el programa de fertilización 50 a 70 kg de P₂O₅/ha, principalmente como fosfato monoamónico. En cuanto al potasio, si la producción es alta, el calibre es pequeño y no se consigna historial de fertilización con este elemento, debe considerarse la aplicación de 90 a 120 kg K₂O/ha.

Resultados de ensayos realizados por el INIA, indican que el período más eficiente de aplicación de nutrientes es el comprendido entre los estados de cuaja (frutos 4-6 mm de diámetro) hasta antes del cambio de color (pinta). En Huasco, este período ocurre desde mediados de diciembre hasta fines de febrero. Durante este período los árboles muestran una gran actividad, especialmente un crecimiento de brotes y raíces.

Materia orgánica

La materia orgánica es uno de los factores claves en la fertilidad y productividad de un suelo. Puesto que el clima del norte chico es del tipo semiárido, el contenido promedio de materia orgánica es bastante bajo, generalmente menos del 1%.
La materia orgánica del suelo está formada por residuos de plantas y animales en diversos estados de descomposición, organismos del suelo y sustancias sintetizadas por esos microorganismos. Los residuos orgánicos son descompuestos en el suelo por la microflora bacteriana. Estos y otros organismos de mayor tamaño como lombrices e insectos ingieren residuos orgánicos y suelo, uniendo de esta forma las partículas en agregados estables.

La presencia de materia orgánica facilita la aireación, infiltración y retención de humedad del suelo.

Es importante reconocer que los macronutrientes, como el nitrógeno, fósforo o potasio, no existen en la materia orgánica en cantidad suficiente para sostener una alta producción de árboles adultos de olivos. La materia orgánica del suelo, generalmente, contiene 2 a 4% de nitrógeno y porcentajes menores de otros nutrientes. Además, estos nutrientes, durante la descomposición, deben ser mineralizados a la forma inorgánica, para estar disponible para los árboles. Por este motivo, la materia orgánica se utiliza preferentemente como una enmienda del suelo con el propósito de mejorar la aireación en suelos arcillosos y aumentar la retención de agua en suelos arenosos.

La materia orgánica que contiene la más baja cantidad de carbono en relación al nitrógeno proviene de los abonos verdes (leguminosas, pasto en general). Estos cultivos se descomponen rápidamente y proveen nutrientes más allá de los requerimientos de los microorganismos. Los guanos de animal tienen altos contenidos de sal, especialmente el estiércol de cabra, por lo que deben ser usados con precaución para evitar acumulación excesiva de ella. Además, las deficiencias de zinc pueden explicarse por fuertes aplicaciones de guano animal.

Residuos como paja de trigo y aserrín son bajos en nitrógeno pero altos en carbono, por lo tanto, requieren de un largo período de descomposición. La adición de fertilizante nitrogenado a estos residuos acelera la descomposición y ayuda a satisfacer la demanda de nutrientes por parte de los microorganismos. Cuando estos residuos (como paja de trigo) son incorporados al suelo, una regla general es aplicar 9 kg de nitrógeno por tonelada de residuo.

Cuando se requiere de la aplicación de materia orgánica para mejorar características físicas del suelo, lo normal es aplicarla en una cantidad no inferior a 20 toneladas por hectárea.

Fertilización foliar

La fertilización foliar debe orientarse principalmente a la aplicación de micronutrientes, debido al bajo requerimiento cuantitativo de estos elementos. Una manera económica de aplicar estos oligoelementos vía foliar es usando sulfatos de hierro, manganeso, zinc y cobre. Para lograr una alta eficiencia en su absorción por la cutícula de las hojas se debe acidular la solución a pH 5,5, además de aplicar un adherente para facilitar la absorción.

Estas aplicaciones deben hacerse en la época de crecimiento activo de los árboles y cuando se sospeche de una deficiencia, la cual puede ser diagnosticada previamente vía análisis foliar o por sintomatología visual de deficiencia.

Eventualmente, en condiciones, como carga frutal muy alta, árboles sometidos a estrés hídrico, u otra alteración que genere condiciones adversas para el árbol (por ejemplo escaso desarrollo...
radicular) la fertilización foliar se usa como complemento a la fertilización al suelo con macronutrientes. En estos casos, las aplicaciones de nitrógeno y potasio vía foliar, puede favorecer el crecimiento activo y una mejor producción de los árboles.

Trabajos realizados en España y validados por el INIA, muestran que el olivo absorbe eficazmente el nitrógeno cuando se aplica a las hojas en soluciones de urea o nitrato de amonio. Las concentraciones de urea al 4% no producen ningún daño y en 24 horas se absorbe entre el 60 y 70% del nutriente. Esta práctica tiene la ventaja de no contaminar el suelo y las aguas subterráneas. Cuando es necesario aplicar potasio foliar, es posible usar nitrato de potasio en concentración de 2 a 3%. Tanto para las aspersiones de nitrógeno y potasio la época más apropiada es la de máxima actividad vegetativa, es decir primavera-verano.

Bibliografía

CAPÍTULO 9

PLAGAS

Carlos Quiroz E.
Patricia Larraín S.

De las 23 especies de insectos descritas en el país hasta 1990 (Prado, 1991), 15 habían sido identificadas para las Regiones de Atacama y Coquimbo. Sin embargo, estudios efectuados entre 1996 y 2000 han permitido encontrar nuevas especies que se alimentan de este cultivo (Cuadro 25).

A pesar de lo anterior, la situación de plagas del olivo no es dramática, puesto que pocas de las especies de insectos alcanzan niveles poblacionales de importancia económica. Hay plagas de mayor relevancia en el norte grande del país, como es el caso de la polilla blanca del olivo, *Palpita persimilis* Munroe (Lep., Pyralidae) (aisladamente reportada para Chañaral, en la Región de Atacama), o la conchuela móvil del olivo, *Orthezia olivicola* Being (Hem. Ortheziidae), especies que no se han adaptado a las condiciones agroecológicas del norte chico.

En el exterior hay plagas relevantes y que limitan la producción y calidad de las aceitunas. Es el caso de la mosca del olivo (*Bactrocera oleae*), la polilla del olivo (*Pray oleae*), una especie de trips (*Liothrips oleae*), y escamas, como *Parlatoria oleae*. Es por lo tanto importante mantener un sistema riguroso de restricciones cuarentenarias al ingresar material vegetal desde fuera del país, a fin de preservar las condiciones de baja incidencia de plagas. Por otra parte, el manejo de plagas debe ser cuidadoso, a fin de impedir la irrupción de especies de insectos o de ácaros que hasta ahora se han mantenido en niveles de población por debajo de aquellos que causan un daño económico, lo que incluso puede hacer factible la producción orgánica del olivo, o en todo caso, aplicar estrategias eficientes de manejo integrado de las plagas en este cultivo.

Entre las plagas que en determinadas condiciones pueden llegar a revestir importancia económica está la conchuela negra del olivo, la conchuela hemisférica, la escama blanca de la hiedra y el chanchito blanco de cola larga. El resto de las especies presentes en el olivo, difícilmente alcanzan poblaciones que amenacen la calidad y la cantidad de la producción.

Conchuela negra del olivo, *Saissetia oleae* (Oliver)

Descripción de la plaga

Las conchuelas son insectos que presentan un caparazón duro en todos sus estados de desarrollo, excepto cuando son ninfa recién nacidas. Las hembras adultas de la conchuela negra del olivo
Cuadro 25. Insectos y ácaros asociados al olivo en las regiones de Atacama y Coquimbo. (modificado de Prado, 1991)

<table>
<thead>
<tr>
<th>Nombre científico</th>
<th>Orden, Familia</th>
<th>Nombre común</th>
<th>Importancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frankliniella occidentalis (Pergande)</td>
<td>Thys., Thripidae</td>
<td>Trips californiano</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Heliothrips haemorrhoidalis (Bouché)</td>
<td>Thys., Thripidae</td>
<td>Trips del palto</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Planococcus citri (Risso)</td>
<td>Hem., Pseudococcidae</td>
<td>Chanchito blanco de los cítricos</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Pseudococcus longispinus (Targ-Tozzi)</td>
<td>Hem., Pseudococcidae</td>
<td>Chanchito blanco de cola larga</td>
<td>Occasional</td>
</tr>
<tr>
<td>Polinia pollini (Costa)</td>
<td>Hem., Astereolecaniidae</td>
<td>Cochinchella globosa del olivo*</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Saisssetia coffea (Walker)</td>
<td>Hem., Coccidae</td>
<td>Conchuela hemisférica</td>
<td>Occasional</td>
</tr>
<tr>
<td>Saisssetia oleae (Oliv.)</td>
<td>Hem., Coccidae</td>
<td>Conchuela negra del olivo</td>
<td>Primaria</td>
</tr>
<tr>
<td>Abgrallaspis latastei (Cock.)</td>
<td>Hem., Diaspididae</td>
<td>Escama del canelo</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Aspidiotus nerii Bouché</td>
<td>Hem., Diaspididae</td>
<td>Escama blanca de la hiedra</td>
<td>Occasional</td>
</tr>
<tr>
<td>Chrysomphalus dactylospermi (Morgan)</td>
<td>Hem., Diaspididae</td>
<td>Conchuela anaranjada</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Diaspidiotus ancylius Putnam</td>
<td>Hem., Diaspididae</td>
<td>Escama blanca de la ramilla</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Hembiterlesia lataniae (Sign.)</td>
<td>Hem., Diaspididae</td>
<td>Escama del látno</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Hembiterlesia rapax</td>
<td>Hem., Diaspididae</td>
<td>Escama</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Icerya purchasi Mask.</td>
<td>Hem., Margarodidae</td>
<td>Conchuela acanalada de los cítricos</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Leptoglossus chilensis (Spin.)</td>
<td>Hem., Coreidae</td>
<td>Chinchel de los frutales</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Chilecomadia valdiviana (Phil)</td>
<td>Lep., Cossidae</td>
<td>Gusano del tronco del palto**</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Decticrates robustus (Bl.)</td>
<td>Col., Bostrichidae</td>
<td>Taladrador</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Micrapate scabrata (Er.)</td>
<td>Col., Bostrichidae</td>
<td>Taladrador de la vid</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Hylesinus antipodus Sedg. ***</td>
<td>Col., Scoyldidae</td>
<td>Escorlito del olivo**</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Hylesinus oleipera F. ***</td>
<td>Col., Scoyldidae</td>
<td>Escorlito del olivo**</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Xyleborus saxeseni (Ratz.)</td>
<td>Col., Scoyldidae</td>
<td>Taladro del olivo</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Naupactus xanthographus (Germar)</td>
<td>Col., Curculionidae</td>
<td>Burrito de la vid</td>
<td>Secundaria</td>
</tr>
<tr>
<td>Solenopsis gayi (Spinola)</td>
<td>Hym., Formicidae</td>
<td>Hormiga cortadora</td>
<td>Occasional</td>
</tr>
<tr>
<td>Ditymyas athiasella (Keifer)</td>
<td>Ac., Eriophyidae</td>
<td>Eriófido del olvo</td>
<td>Occasional</td>
</tr>
<tr>
<td>Oxycenus maxwelli (Keifer)</td>
<td>Ac., Eriophyidae</td>
<td>Eriófido del olvo</td>
<td>Occasional</td>
</tr>
<tr>
<td>Brevipalpus chilensis (Baker)</td>
<td>Ac., Tenuipalpidae</td>
<td>Falsa araña roja de la vid</td>
<td>Secundaria</td>
</tr>
</tbody>
</table>

* No está presente en la región de Coquimbo
** No está presente en la región de Atacama
*** Existe confusión sobre la verdadera identidad del escorlito del olivo (Prado 2001)
son de color café oscuro a negro, y en el dorso presentan una protuberancia en forma de “H” (Foto 28). Son ligeramente ovales, con un diámetro de 3 a 4 mm. Bajo el caparazón, y adherido a él, se encuentra el insecto propiamente tal, de color cremoso oscuro y con patas y antenas de 8 segmentos.

Foto 28. Hembras adultas de conchuela negra del olivo.

Las hembras colocan sus huevos debajo del caparazón. Cada hembra coloca un promedio de 2.000 a 2.500 huevos, muchas veces en forma partenogenética (sin intervención de machos). De estos huevos emergen las ninfas móviles (Foto 29), de colores amarillo a anaranjado, las que deambulan por hojas y ramillas buscando un lugar donde fijarse. Posteriormente se producen los estados ninfales fijos (II y III), alargados y de color café con manchas más oscuras. De aquí alcanza el estado gomoso, antes de transformarse en una hembra adulta (Smith el al., 1997; Ripa y Rodríguez, 1999; Katasoyannos, 1992). En el norte chico el ciclo demora alrededor de 10 meses, produciéndose un traslape de diferentes estado de desarrollo (Figura 11), con una mayor presencia de hembras adultas hacia fines de invierno y de verano.

Foto 29. Ninfas de conchuela negra del olivo.
Daño

Como todos los homópteros fitófagos, la conchuela negra del olivo se alimenta chupando directamente el contenido de los vasos conductores de la planta hospedera. Producto de esta alimentación es que estos insectos excretan una mielecilla pegajosa y brillante. Los árboles adquieren un color negruzco (fumagina), debido a los hongos saprófitos que crecen en la mielecilla (Foto 30). La infestación reduce el vigor y la productividad de los árboles. Aún al controlar las conchuelas, la pérdida de vigor puede manifestarse en la temporada siguiente sobre la producción.

La conchuela negra del olivo presenta un gran número de plantas hospederas (González y Lamborot, 1989; Prado 1991). Entre las más importantes en las regiones del norte

Foto 30. Fumagina y daño de Saissetia oleae
chico están los cítricos y damascos. También son hospederos importantes algunos arbustos y árboles ornamentales, los cuales pueden transformarse en fuente primaria de infestación de huertos de olivos cercanos.

Manejo integrado

Control cultural

Las conchuelas prefieren desarrollarse en árboles con vegetación densa. De ahí que sea importante podar, para proveer al árbol de un ambiente aireado e iluminado; árboles con estas características rara vez tienen poblaciones altas de conchuela negra. Otro factor importante es la fertilización; los árboles con una sobrefertilización nitrogenada estimulan la reproducción y el vigor de las conchuelas, las que pueden alcanzar altas poblaciones. La fertilización de los árboles debe hacerse basándose en análisis que detecten sus requerimientos específicos. Por otra parte, los árboles débiles, con bajos niveles de fertilización, riego escaso y alta competencia de malezas, son más susceptibles al ataque y daño de esta plaga.

Control biológico

Existe una serie de enemigos naturales de las conchuelas entre parasitoides y depredadores.

Se entiende por enemigo natural a un insecto que vive a expensas de un ácaro o insecto plaga, como en este caso la conchuela, parasitándolo o alimentándose de él, con lo cual le provoca la muerte, limitando el crecimiento de sus poblaciones. Los parasitoides de las conchuelas corresponden a pequeñas avispitas que ponen sus huevos en el interior del cuerpo del insecto. De esos huevos emergen larvas que se alimentan de la conchuela hasta completar su desarrollo, con lo cual le ocasionan la muerte. Luego el enemigo natural pupa, y de esa pupa emerge una nueva avispita adulta, la que para abandonar el caparazón de la conchuela, hace un orificio de salida. Entre las avispitas más eficaces en el control de conchuelas están los encírtidos del género *Metaphycus* [Foto 31]. Pueden parasitar tanto ninñas como adultos. La especie más efectiva es *Metaphycus helvolus*, la cual presenta una gran capacidad de búsqueda y dispersión. Estas avispitas pueden matar ninñas sin necesidad de parasitarlas, ya que insertan su aguijón para extraer su hemolinfa (la “sangre” del insecto), de la cual se alimentan.

Otro grupo importante de parasitoides, corresponde al de los afelínidos, que es otra familia de pequeña avispas, en la que destaca la especie *Coccophagus caridei* Brethes.

En el grupo de los depredadores, es decir, insectos que se alimentan de algunos estados de

desarrollo de las conchuelas, también se encuentra una avispa. Corresponde al pteromálido *Scutellista caerulea* (Fonscolombe), cuya larva vive bajo el caparazón alimentándose de huevos de la conchuela. Si no dispone de huevos, se alimenta de la hembra de conchuela adherida bajo el caparazón. Otros depredadores corresponden a pequeñas “chinitas” de colores oscuros, como es el *Cryptolaemus montrouzieri* Mulsant, que ocasionalmente se alimenta de ninfás de conchuelas.

Monitoreo y control químico

Los primeros síntomas de ataque de conchuela negra corresponden a la presencia de mielecilla, de consistencia pegajosa, en hojas y ramillas. Usualmente junto a este cuadro se presentan hormigas, las cuales utilizan las sustancias azucaradas de la mielecilla, por lo que protegen a la plaga combatiendo a insectos parásitos y depredadores, y de este modo dificultan el control biológico de las conchuelas (Ripa y Rodríguez, 1999). Cuando el ataque de la plaga es intenso, la presencia de conchuelas se manifiesta en el color negruzco de hojas y ramillas debido al desarrollo de fumagina que, cuando es severa, interfiere con el proceso de fotosíntesis del árbol, lo que se traduce en la ya señalada pérdida de vigor y productividad.

El monitoreo debe hacerse en las épocas de mayor manifestación de la plaga: en invierno, para detectar la presencia y densidad de estados ninfales, y a principios de primavera y fines de verano, períodos donde se produce una mayor acumulación de mielecilla, producto de una mayor densidad de población de los diferentes estados de desarrollo del insecto.

Primero es recomendable hacer un monitoreo general del huerto, a fin de detectar árboles más afectados, ya que el ataque comienza en focos. Si se observan árboles más afectados, éstos deben marcarse y monitorearse con más frecuencia. Para detectar los huevos bajo el caparazón de las hembras, así como las ninfás móviles o ninfás fijas de segundo estado, es recomendable utilizar una lupa de bolsillo de 10X.

Además de los árboles más afectados y marcados, debe muestrearse el cuartel dividido en cinco áreas. En cada una de estas áreas se revisan diez árboles consecutivos y de cada uno debe extraerse cinco ramillas de 20 a 25 cm de largo, de la parte inferior y media del árbol, tanto del exterior como del interior de la copa. Del total de ramillas se obtiene un promedio de adultos y ninfás al estado gomoso (así se llama al último estado de la ninfa, antes de convertirse en hembra adulta). Si el promedio por ramilla es superior a cinco conchuelas en esos estados de desarrollo, debe efectuarse un control químico. Si en este nivel de infestación no se controla, la siguiente generación puede ocasionar pérdidas significativas en el rendimiento y la calidad de las aceitunas, puesto que esa densidad de la plaga indica una población crítica y en pocos días habrá una alta población de ninfás. Debe considerarse que para lograr la mayor mortalidad del insecto, la mejor oportunidad de control es cuando gran parte de la población se encuentra como ninfa de primer estadío, bajo el caparazón de las hembras adultas. Es en este estadío de ninfás migratorias, que los insectos aún no han secretado gran parte de las cubiertas endurecidas que protegen sus cuerpos, permitiendo la acción de contacto de los insecticidas.

Algunas de las alternativas de productos que pueden aplicarse, aparecen en el Cuadro 26.
Métodos de manejo orgánico

Para el manejo orgánico del huerto de olivos, es decir, sin hacer uso de productos químicos sintéticos, es muy importante considerar todo lo referido anteriormente con relación al control cultural y control biológico. Sin embargo, en aquellos casos en que, a pesar de aplicar estas medidas, se presentan poblaciones importantes de conchuelas, el control con aceites minerales es aceptable bajo el esquema de producción orgánica.

También el lavado con agua y detergente de los árboles infestados, aplicado con alta presión, otorga un buen control de estos insectos.

Cuadro 26. Alternativas de control químico de conchuelas en olivo

<table>
<thead>
<tr>
<th>Ingrediente activo</th>
<th>Nombre comercial</th>
<th>Dosis por 100 lt de agua (producto comercial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buprofezin</td>
<td>Applaud 25WP</td>
<td>75–100 g</td>
</tr>
<tr>
<td>Clorfenvinfos</td>
<td>Birlane 240 EC</td>
<td>100 cc + Citroliv</td>
</tr>
<tr>
<td>Aceite Mineral</td>
<td>Citroliv</td>
<td>1,5–2,0 ó 1,0 litro + Birlane</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>Clorpirifos 48 EC</td>
<td>100 cc + Aceite</td>
</tr>
<tr>
<td></td>
<td>Troya 4EC</td>
<td></td>
</tr>
<tr>
<td>Metidation</td>
<td>Oleo Ultracid 100 EC</td>
<td>200 cc</td>
</tr>
<tr>
<td>Dimetoato+ Chlorpirifos</td>
<td>Salut</td>
<td>150–200 cc</td>
</tr>
<tr>
<td>Aceite Mineral</td>
<td>Sunspray Ultra-Fine</td>
<td>1–1,5 lt</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>Confidor 350 SG</td>
<td>20–30 cc o g.</td>
</tr>
<tr>
<td></td>
<td>Punto 70 WP</td>
<td></td>
</tr>
</tbody>
</table>

Conchuela hemisférica, *Saissetia coffeae* (Walker)

Descripción de la plaga

Las hembras adultas de la conchuela hemisférica tienen forma redondeada, de media esfera (de ahí su nombre común), la superficie del caparazón es lisa y brillante, de color café oscuro (Foto 32). Su diámetro es de 3 a 4 mm. Bajo el caparazón, está adherida la hembra, la cual posee patas no funcionales, es incapaz de movilizarse, y antenas con ocho segmentos (Hill, 1983).

La conchuela hemisférica no tiene machos, y por lo tanto toda su reproducción es partenogenética. La hembra puede oviponer hasta alrededor de 2,000 huevos. Estos son de color rosado cremoso y brillante, y se encuentran protegidos bajo el caparazón materno. De aquí emergen las ninñas migratorias, de cuerpo aplanado y de color amarillo. Poseen ojos, antenas y patas bien desarrolladas, y por lo tanto muestran una gran actividad y capacidad de dispersión. A partir de ellas se desarrollan los estados ninfales, que están fijos en las hojas y ramillas, y presentan una
protuberancia en forma de “H” en el dorso, por lo cual en estos estados la conchuela hemisférica es muy difícil de diferenciar de la conchuela negra del olivo. En las hembras adultas la protuberancia desaparece, quedando el caparazón con su típica forma de semiesfera, redonda y lisa (Figura 12).

En invierno, en el norte chico, la conchuela hemisférica se encuentra principalmente en sus últimos estados ninfales y como hembra joven. Al igual que en el caso de la conchuela negra, las hembras comienzan a madurar a salida de invierno, pero en este caso la mayor oviposición ocurre a mediados de enero, es decir, un mes más tarde que en el caso de Saissetia oleae. Esto
podría indicar que la conchuela hemisférica es más exigente en temperatura que la conchuela negra, puesto que también se presenta un desplazamiento de la máxima aparición de ninfas migratorias hacia fines de verano. La mayor exigencia de temperatura también explicaría el hecho que, en Chile, la conchuela hemisférica no haya sido encontrada al sur de la Región Metropolitana.

Aparentemente, bajo las condiciones de los valles transversales del norte chico, esta especie presenta una generación al año, pero en años con inviernos beninos se podrían desarrollar dos.

Daño

El daño producido por la conchuela hemisférica es muy similar al descrito para la conchuela negra aunque en las condiciones de los valles transversales, las poblaciones de *Saissetia coffeae* son, en general, bastante menores. En ocasiones ambas especies pueden presentarse juntas, y en estos casos también es usual que la especie predominante sea la conchuela negra.

La conchuela hemisférica ataca también a otros hospederos frutales, adaptándose bien a especies tropicales y subtropicales, tales como guayabo, lúcuma, mango y cítricos, plantas ornamentales y al interior de invernaderos (Baker, 1994; Beingolea, 1993). También puede encontrarse en otras especies, tales como el molle o pimiento, y algunos helechos.

El efecto en las plantas y síntomas que éstas producen son similares a los descritos para la conchuela negra (Foto 33).

![Foto 33. Conchuela hemisférica en frutos.](image)

Manejo integrado

Las recomendaciones de control cultural y las características del control biológico de la conchuela hemisférica son prácticamente las mismas que la de la conchuela negra del olivo.

Los enemigos naturales identificados en Chile corresponden al afelínido *Coccophagus caridei* (Brethes); los encírtidos *Metaphycus flavus* (Howard), *M. helvolus* (Compere) y *M. stanleyi* Compere; y al pteromálido *Scutellista caerulea* (Fonscolumbe) (Prado 1991; Ripa y Rodríguez, 1999).
El manejo orgánico, el monitoreo y el control químico, son los mismos que lo descrito anteriormente para la conchuela negra; la gran similitud biológica entre ambas conchuelas, pertenecientes al mismo género, hace que su comportamiento y sus efectos sean muy parecidos, por lo cual las estrategias de manejo de ambas especies no presentan diferencias.

Escama blanca de la hiedra *Aspidiotus nerii* (Bouché)

Descripción de la plaga

Las escamas también son insectos que se encuentran protegidos bajo un escudo ceroso pero, a diferencia de las conchuelas, son de menor tamaño y el caparazón no está adherido al cuerpo. Varias especies de escamas pueden encontrarse en huertos de olivos del Norte Chico, pero generalmente en forma esporádica. De un complejo de escamas blancas, la única capaz de lograr poblaciones que produzcan daño económico es la escama blanca de la hiedra (Foto 34), que ocasionalmente puede constituir una plaga importante (Aguilera, et al. 1981).

![Foto 34. Escama blanca de la hiedra.](image)

La escama o caparazón escamosa es redondeada, de alrededor de 2 mm de diámetro. Esta escama es de color blanco a grisáceo y presenta tonalidades más oscuras en el centro. Bajo la escama se encuentra el insecto propiamente tal, que en el caso de la hembra adulta es de color amarillo cremoso, circular, pero con una punta que le da un efecto levemente piriforme (forma de pera). La escama del macho es ovalada y el insecto es de color café amarillento, de menor tamaño que la hembra.

Después de la fecundación, las hembras colocan un promedio de 130 a 140 huevos en pequeños grupos. De aquí emergen las ninñas migratorias que se establecen en tejidos tiernos, donde se fijan y permanecen por el resto de su vida. Sólo el macho adulto presenta alas bien desarrolladas, para volar en busca de las hembras y fecundarlas.

El ciclo dura entre 80 y 90 días en primavera, con una ocurrencia de tres generaciones en las regiones de Atacama y Coquimbo; una generación emerge a partir de agosto, una segunda a pleno verano y luego otra a fines de otoño.
Daño

La escama blanca de la hiedra es una especie que constituye una plaga importante en huertos de olivos viejos y mal manejados. Puede ser una plaga primaria cuando se ha instalado en el huerto. El ataque es mayor en las partes bajas del árbol, donde se presentan condiciones de humedad y sombreado.

Cuando las poblaciones de escama son altas, se ubican en frutos, hojas y madera (Fotos 35 y 36). La infestación de los frutos retrasa la madurez de la superficie ocupada por la escama, lo que provoca manchas verdes en la fruta madura. Los ataques severos pueden deformar los frutos, con lo cual pierden por completo su valor comercial, y reducir hasta en un 25% el contenido de aceite. También se produce daño en hojas y ramillas, con lo cual todo el árbol se debilita.

Foto 35. Escama blanca de la hiedra en fruto.

Foto 36. Escama blanca de la hiedra en hojas de olivo.

Entre los hospederos más importantes de la escama blanca de la hiedra hay una serie de especies frutales tropicales y subtropicales, tales como mandarino, mango, naranjo, pátio, limonero, aunque también puede encontrarse en especies de climas más templados, como son kiwi, macadamia, pistacho, vid (Arce y Cerda, 1991; Jiménez, 1967).

Manejo integrado

Control cultural

Puesto que las escamas se dispersan principalmente a través de movimientos de material vegetativo, es de gran importancia la sanidad del material de viveros y la eliminación de restos de poda de huertos infestados. La mejor forma de impedir la aparición de escamas en el huerto es mantener los árboles con buena aireación, luminosidad y un vigor adecuado.
Control biológico

El parasitismo de escama blanca de la hiedra puede llegar a ser muy alto, con lo cual la población de la plaga generalmente se mantiene por debajo de los umbrales de daño económico (Prado, 1991; Ripa y Rodríguez, 1999).

Los parásitos más frecuentes son avispitas de la familia Aphelinidae, las especies *Aphytis lingnanensis* y *A. mellinus*. Estas son de color amarillo, de alrededor de 1 mm de largo (Foto 37).

También hay insectos depredadores de escamas, como los coccinéidos *Coccidophilus citricola* Brethes; *Chilocorus bipustulatus* (L.) y *Rhizobius lophanthae* (Blaisd). Todas estas corresponden a “chinitas” de muy pequeño tamaño y de colores oscuros. Tanto larvas como adultos se alimenten de escamas.

Monitoreo y control químico

El monitoreo es esencial para detectar los primeros focos de infestación. Estos generalmente aparecen en árboles débiles mal manejados. La sola corrección de la causa de debilitamiento es una buena forma de controlar escamas.

Si el insecto persiste o se incrementa, es necesario controlarlo en las épocas de mayor incidencia de los primeros estadios en el campo (diciembre-enero), aplicando en los focos de infestación y no en forma generalizada. Los productos recomendados para conchuelas (Cuadro 26) también son eficientes para el control de escamas.

Métodos de manejo orgánico

Como rara vez las escamas constituyen poblaciones graves, el solo hecho de seguir ciertas medidas culturales y respetar el control biológico permite una producción orgánica desde el punto de vista fitosanitario. De ser necesario, aplicar algún producto de control de escamas, el uso de aceites es aceptado por la normativa de producción orgánica. Aceites, como Sunspray Ultrafine al 2%, han mostrado buena acción de control sobre la población de *A. nerii*.

Chanchito blanco de cola larga
Pseudococcus longispinus (Targioni & Tozzetti)

Descripción de la plaga

A lo menos un par de especies de chanchitos blancos pueden encontrarse en huertos de olivo del Norte Chico. Sin embargo, es el chanchito blanco de cola larga el más frecuente (Prado, 1991).
Las hembras son ovaladas, ligeramente convexas, de cuerpo bien segmentado y cubierto por un polvo ceroso blanco. Presentan filamentos marginales de consistencia lanosa, incluyendo los filamentos caudales que son, en el caso del chanchito blanco de cola larga, consistentemente más largos que los laterales (Foto 38).

Los filamentos marginales de la hembra adulta tiene una longitud equivalente a la mitad del ancho del cuerpo, mientras que los filamentos caudales pueden ser más largos que el cuerpo. Tal característica permite identificar rápidamente a esta especie. Las hembras originan ninñas migratorias (vivíparas), entre 150 y 200, que se encargan de diseminar la plaga. Se produce otro par de estados ninfeales antes de alcanzar el período adulto. Los machos son alados y se mueven en busca de las hembras para fecundarlas.

Daño

Los chanchitos blancos son insectos muy polífagos, es decir, se alimentan de una gran cantidad de plantas, incluyendo especies frutales y hortícolas, cultivos anuales, ornamentales y forestales. Entre los principales hospederos frutales del chanchito blanco de cola larga, además del olivo, están los cítricos, perejil, manzana, quindo, caqui, chirimoyo, lúcuma, vid, palto, níspero, mango, guayabo y maracuyá (Prado, 1991).

En las condiciones agroecológicas del norte chico, el chanchito blanco de cola larga comienza su actividad a principio de primavera con la aparición de las primeras ninñas. Se pueden presentar tres o cuatro generaciones dependiendo de las temperaturas. El umbral térmico para el desarrollo de esta especie es de 12,5°C.

Las mayores poblaciones del chanchito blanco se presentan desde mediados de enero hasta mediados de otoño.

Como el resto de los insectos succionadores de savia, el chanchito blanco de cola larga ocasiona debilitamiento general de las plantas, caída de frutos en ataques severos, contaminación de los frutos por la presencia del insecto y de la mielecilla, la cual posteriormente es colonizada por los hongos que producen la fumagina o ennegrecimiento del árbol.

Manejo integrado

Control cultural

Los chanchitos blancos se encuentran en ramillas con follaje denso, en frutos en contacto, o al interior de la copa emboscada del árbol. Debe evitarse que se produzcan las situaciones anteriormente descritas mediante el manejo del follaje y la vegetación de la copa del árbol. El
control de malezas hospederas de chanchito blanco es otra práctica cultural que se recomienda efectuar en el interior o alrededor del huerto de olivos.

Control biológico

Los chanchitos blancos presentan varios enemigos naturales entre parasitoides y depredadores que, en general, mantienen sus poblaciones en niveles bajos.

Los parasitoides más importantes es la avispa *Tetracnemoidea brevicornis* (Girault). Los adultos de estas avispas miden de 1 mm de longitud y son de color negro. Otro parasitoide importante es *Coccophagus gurneyi* Compere, que parasita estados ninfales pequeños. Otras avispas que parasitan al chanchito blanco de cola larga son *Aenasius punctatus* Compere y *Pseudaphycus angelicus* (Foto 39).

Entre los depredadores se encuentran los dípteros *Leucopis sp* y *Ocyptamus confusus* y las chinitas *Cryptolaemus montrouzieri* (Foto 40) e *Hyperaspis funesta*.

Monitoreo y control químico

Los chanchitos blancos son insectos de difícil control, ya que presentan sus cuerpos protegidos por secreciones cerosas que los protegen de la acción de contacto de los insecticidas. Además, la mayoría se esconde en sectores de la planta o frutos, donde es difícil lograr un buen mojamiento. Es importante monitorear el huerto, para descubrir focos iniciales de chanchitos. La presencia de hormigas subiendo al árbol es una buena indicación de la presencia de este insecto, o de otro homóptero (conchuelas, escamas) que esté colonizando. En caso de ser necesario, el tratamiento debe hacerse en el foco.

En general, un buen detergente insecticida, aceite mineral o cualquiera de los productos recomendados para conchuelas y escamas, ejercerá una buena acción de control.

Método de manejo orgánico

Las medidas de control cultural, la presencia de enemigos naturales y la detección temprana de focos, permitirá producir olivos sin la necesidad de recurrir a insecticidas químicos.
Plagas coscionales

Además de las especies ya descritas, hay otros dos grupos de artrópodos que ocasionalmente pueden constituirse en plagas en el olivo. Son las hormigas cortadoras y los ácaros eriófidos.

Hormiga cortadora *Solenopsis gayi* (Spinola)

La hormiga cortadora (*Foto 41*) normalmente no reviste importancia económica (Larraín, et al. 1995). Sin embargo, en plantaciones nuevas, donde el suelo no había sido anteriormente cultivado, puede producir ataques capaces de matar plantas. También puede ocurrir un ataque en los primeros años de producción de las plantas; las hormigas suben hasta los frutos, consumiéndolos totalmente y dejando sólo la semilla adherida al pecíolo. Esta especie es de un tamaño un poco menor que la hormiga común. Es de color café oscuro a negro brillante, con dos nódulos en el pecíolo (unión del tórax con el abdomen en las hormigas). Las obreras miden de 3 a 4 mm de largo y presentan abundante pilosidad en el cuerpo.

Esta es la única especie de hormiga capaz de dañar plantas cultivadas en Chile. Pueden dañar tallos, raíces y frutos de diversas especies de plantas, en suelos áridos y pedregosos.

Al cultivarse el suelo se destruye el hábitat de la hormiga, lo que estimula el ataque al cultivo nuevo. Se ha encontrado daño en cítricos, palto, almendro, pepino dulce, además del olivo.

En caso de producirse ataques del insecto, en los focos detectados se puede aplicar productos, como Clorpirifós, directamente al cuello de las plantas afectadas.

Acaros Eriófidos, Ditrymacus athiasella Keifer y Oxicenus maxwelli (Keifer)

Las especies de ácaros presentes en el olivo corresponden a un complejo de especies de la familia Eriophyidae (Peralta, 1998; Peralta et al. 1991). Son de muy pequeño tamaño, miden entre 0,14 y 0,16 mm de largo, por lo cual es casi imposible observarlos incluso con una lupa de bolsillo de 10X. Son ácaros de forma alargada, de color café amarillento, cremosos y brillantes, y con sólo dos pares de patas en la parte anterior del cuerpo. Las hembras adultas ponen huevos, de los cuales se desarrollan dos estados inmaduros ante de transformarse en adultos.

Estos ácaros viven principalmente en los brotes y hojas nuevas de las plantas. Si las condiciones son favorables para su desarrollo, pueden alcanzar poblaciones altas que deforman las hojas
nuevas. Esto podría ocasionalmente causar problemas en vivero o en plantas nuevas, por lo tanto su presencia y daño debe vigilarse con acuciosidad en huertos y viveros.

No se ha detectado enemigos naturales de estos ácaros en el país, pero aún así no se requiere de medidas de control. Un buen manejo general del cultivo, y un manejo de plagas eficiente, mantendrá las poblaciones de ácaros bajo los niveles de daño económico.

Bibliografía

CAPÍTULO 10
Enfermedades

Fernando Riveros B.

Una amplia prospección realizada durante las temporadas 1999 y 2000 con el fin de determinar e identificar las principales enfermedades que afectan el cultivo del olivo en la Región de Atacama, demostró la presencia de Verticillium dahliae Kleb, Sipilocea oleagina y Mycocentropospora cladosporoides. Estos organismos fungosos fueron detectados en la mayoría de los huertos del valle del Huasco, causando daños de diferente magnitud.

En huertos antiguos y nuevos establecidos con la variedad Sevillano se detectó en forma generalizada los efectos de deformación de la hoja del olivo, una enfermedad sobre la cual aún permanecen muchas interrogantes sin contestar.

Verticilosis

En función de su amplia distribución y las importantes pérdidas que provoca, la verticilosis ó “peste rayo”, causada por el hongo del suelo, Verticillium dahliae, fue definida como la principal limitación sanitaria de los huertos de olivo establecidos en la Región de Atacama.

El potencial infectivo que tiene este hongo sobre numerosas especies cultivadas y no cultivadas, su capacidad para sobrevivir prolongadamente en el suelo y su facultad de crecer confinado en el xilema de las plantas, dificultan enormemente su control.

En Chile no se ha determinado el nivel de daño causado por la enfermedad, sin embargo, según Thanassoulopoulos et al, citado por Jiménez (1998), en Grecia el patógeno presenta una incidencia de 2 a 3% de las plantas, con una tasa de mortalidad superior al 1%. En Marruecos se ha estimado una incidencia entre 10 y 30% (Serrhin y Zeronal, 1995). Información publicada en 1998, indica que en España cerca del 3% de los olivares estarían afectados por la verticilosis con una incidencia de entre 10 y 90% de árboles enfermos, al mismo tiempo esta información indica que por lo menos el 27% de la mortalidad detectada en plantas de 4 a 10 años de edad podrían ser atribuibles a V. dahliae (Jiménez 1998).

Sintomatología

La peste rayo, se puede presentar de dos formas. En algunos casos las plantas enfermas experimentan, desde primavera a principios del verano, un decaimiento lento, generalmente
acompañado de necrosis en las inflorescencias, las cuales mantienen sus flores momificadas por un tiempo prolongado sobre la planta. Junto con ello se produce un cambio de color en las hojas desarrolladas sobre el brote afectado (adquieren un color verde mate), las cuales caen antes de secarse. Una segunda forma de expresión de la enfermedad corresponde a una muerte rápida de brotes, ramas principales y ramas secundarias, generalmente entre fines de invierno e inicios de primavera (Foto 42).

Foto 42. Síntomas de V. dahliae, muerte sectorizada de ramas y ramillas de plantas enfermas.

Ciclo del patógeno

V. dahliae, es un hongo saprófita que pertenece al grupo de los deuteromicetes. Este organismo es capaz de sobrevivir en el suelo bajo condiciones adversas y en ausencia de hospederos por largos períodos de tiempo, mediante estructuras de resistencia llamadas microesclorocíos. Estas estructuras son de forma globosa o alargada y de color negro, que se desarrollan sobre tejido muerto. Puede infectar numerosos cultivos herbáceos y hortícolas, así como plantas leñosas y malezas dicotiledóneas.

Las principales fuentes de propagación de la enfermedad son: el suelo y las plantas infectadas. Los microesclorocíos se diseminan mediante herramientas agrícolas, maquinaria y agua de riego superficial. La dispersión del patógeno a grandes distancias se ve facilitada por el establecimiento de plantas infectadas en las nuevas plantaciones.
V. dahliae no tiene un crecimiento significativo en el suelo, los microsclerocios, permanecen en latencia, hasta que son estimulados a germinar, por los exudados radiculares que secretan las plantas susceptibles a la enfermedad.

La invasión del hongo a la planta tiene lugar, probablemente, a través de la epidermis intacta de las estructuras radiculares, en los puntos de inserción de las raíces secundarias en la raíz principal y por heridas de diversa naturaleza. Una vez alcanzado el xilema, el patógeno se extiende a lo largo del eje de la planta por medio de conidias que son trasladadas por la corriente transpiratoria y por el micelio que crece transversalmente a través de los poros existentes entre los vasos xilemáticos. La descomposición de los restos de plantas infectadas en el suelo, libera una gran cantidad de microsclerocios constituyendo nuevas fuentes de inoculo para subsiguientes infecciones.

Epidemiología

V. dahliae desarrolla un solo ciclo de patogénico durante un ciclo de crecimiento de la planta de olivo. El desarrollo de la enfermedad en el tiempo está relacionado con la densidad de inoculo inicial y con la eficiencia del inoculo para establecer infección y posteriormente causar enfermedad.

Un aspecto característico de la verticilosis del olivo es la recuperación sintomática de la planta infectada y la disminución aparente de la enfermedad dentro de una plantación en el curso de los años. El patógeno es fácilmente recuperado desde árboles enfermos, tanto en invierno como en primavera. Comparativamente su aislamiento durante el verano es más difícil debido, probablemente, a la muerte del hongo en el tejido infectado y a la formación de nuevo xilema en plantas enfermas. Esta situación sugiere que la continuidad y avance de la enfermedad dentro de la planta en el tiempo, requiere de la ocurrencia de nuevas infecciones a través de sus raíces (Wilhem, 1981).

A pesar que la enfermedad puede afectar a plantas de olivos de 50 años o más, se ha comprobado que los ataques más severos casi siempre ocurren en plantaciones nuevas, siendo más susceptibles aquellas plantaciones de entre 5 a 6 años de edad.

Uno de los factores que ejerce mayor influencia sobre el desarrollo de la enfermedad, es la alta humedad en el suelo. Se supone que en un suelo muy húmedo se mantienen, por largos períodos de tiempo, condiciones de temperatura muy favorables para la infección. Es así como, las plantaciones establecidas en suelos de riego presentan una mayor incidencia de V.dahliae que aquellas establecidas en condiciones de secano.

El manejo del suelo es otro factor relacionado con la enfermedad. Los huertos donde se ha realizado un mayor número de labores en el suelo, presentan una mayor incidencia del patógeno. Esta situación es bastante clara cuando en las labores se ha utilizado cultivador de disco, cuchillas u otro tipo de implemento que provoque heridas en el sistema radicular, las cuales facilitan la invasión del patógeno y su acceso al sistema vascular (Blanco y Jiménez, 1984; Zachos 1963; y Tizanos; citado por Jiménez 1998).
Al igual que la mayoría de las enfermedades vasculares causadas por organismos fungosos, la verticilosis del olivo, es difícil de controlar. Entre los factores que dificultan su control están: su amplia gama de cultivos hospederos susceptibles, su capacidad para sobrevivir prolongadamente en el suelo y su ubicación en el xilema, que dificulta el acceso para efectuar tratamientos químicos. En el caso particular del olivo, el control de *V. dahliae* debe ser concebido dentro de un contexto de manejo integrado, donde se apliquen secuencialmente una serie de medidas que se inician antes de establecer la plantación y que deben continuar durante el desarrollo del cultivo.

Medidas de preplantación

Elección de suelos no infectados: la elección de suelo para establecer una nueva plantación de olivos, debe estar basada en la información histórica de las rotaciones de cultivos establecidas previamente en esos suelos. Eventualmente se podría realizar una prospección para determinar la densidad de inóculo inicialmente presente en el suelo. En todo caso una nueva plantación de olivo no debe ser establecida en suelos donde previamente se ha cultivado hortalizas. Especialmente cucurbitáceas (melón) o solanáceas (tomate), los cuales son susceptibles a *V. dahliae* y por consiguiente han contribuido a incrementar el inóculo del patógeno en el suelo.

Recuperación de suelos fértilves infectados: la recuperación de aquellos suelos donde se ha detectado niveles peligrosos de inóculo se puede realizar utilizando medios físicos, como la solarización, ó mediante métodos químicos, por ejemplo, aplicaciones de formol o methamsodio. Ambos métodos de control pueden ser empleados en toda la superficie o localizados en sectores de la futura plantación.

En condiciones adecuadas de radiación, la solarización de suelo ha demostrado ser eficiente para erradicar *V. dahliae*. El calentamiento de suelo por un lapso de 4 a 6 semanas, cubriendo con plástico transparente el suelo húmedo, en los meses de mayor radiación (en la III Región podría ser entre mediados de octubre y finales de diciembre), debería ser un método útil para erradicar el patógeno de los suelos que estén ligeramente infectados.

Uso de material de plantación libre de inóculo: el establecimiento de programas de inspección y certificación fitosanitaria de viveros en olivo por organismo fiscalizadores es una de las prácticas necesarias para el establecimiento de huertos tecnológicamente avanzados. La presencia asintomática de *V. dahliae* en material de plantación, es un riesgo para las nuevas plantaciones. Esta situación debe ser manejada por los viveristas, multiplicando el material sobre sustratos previamente desinfectado con tratamientos químicos, que disminuyan las probabilidades de establecer plantas infectadas en el vivero.

Uso de cultivares tolerantes: en el mediano plazo deberá ser una de las medidas de mayor éxito para el control de la verticilosis del olivo. En países que mantienen líneas de investigación permanentes, han detectado la existencia de variabilidad genética en la reacción frente a *V. dahliae*. En España, la evaluación de cultivares del olivo inoculados artificialmente, con aislamientos de tipo defoliante y no-defoliante, demostraron que ‘Arbequina’, ‘Cornicabra’, ‘Hojiblanca’, ‘Manzanilla’, ‘Picual’, y ‘Verdial de Alcaudete’ fueron susceptibles al tipo defoliante.
Mientras que 'Empeltre' y 'Frantoio' fueron resistentes.
En las inoculaciones con el tipo no desfoliante, 'Arbequina', 'Cornicabra' y 'Picual' presentaron un grado de susceptibilidad superior que 'Empeltre' y 'Frantoio', los cuales demostraron ser resistente a estos biotipos del patógeno.

Medidas de posplantación

Prácticas de cultivo desfavorables para el patógeno: es de vital importancia no establecer cultivos intercalados o asociaciones de olivo con especies susceptibles a *V. dahliae*. Esta situación ha sido observada con bastante frecuencia en huertos de entre 1 o 2 años establecidos en el valle del Huasco.

Reducir el uso de rastras o cultivadores de discos ó cuchillas, que habitualmente son empleados para el control de malezas, provocando heridas en el sistema radicular de las plantas. En su remplazo se debe recurrir al uso de herbicidas.

Evitar el uso de maquinaria e implementos que previamente han sido utilizados en suelos donde se ha detectado infección del patógeno, para no propagar la enfermedad a suelos eventualmente libres del patógeno. En esos casos es recomendable efectuar una cuidadosa limpieza, lavando con agua y retirando las partículas de suelo adheridas a las herramientas. Las plantas sometidas a riego por goteo han demostrado tener una menor incidencia de la enfermedad que aquellas sometidas a riego por inundación o por surcos.

En árboles infectados por el patógeno, la poda debe ser efectuada antes de la caída de las hojas. Una vez efectuada esta labor, la totalidad del material vegetal debe ser retirado del huerto, para evitar la incorporación de nuevo inóculo al suelo (Foto 43).

Foto 43. Planta afectada por *V. dahliae*, la cual ha sido manejada para estimular el crecimiento de material sano.
Uso de materia orgánica y solarización en plantas adultas: la recuperación sintomática de las plantas y la necesidad del patógeno de realizar nuevas infecciones radicales para asegurar su progreso dentro de la planta (Wilhem, 1981), sugieren la posibilidad de reducir el inoculo de *V. dahliae* en la rizosfera de la planta, mediante la incorporación al suelo de residuos orgánicos que incrementen la actividad de antagonistas microbianos y estimulen el desarrollo de nuevos elementos radiculares. Adicionalmente, en plantas de tres años se comprobó que al ser sometidas a solarización no son afectadas por el patógeno, presentando un incremento en el perímetro del tronco, una mejor brotación y floración. Con esta práctica se redujo en forma significativa la densidad de microesclerocios de *V. dahliae* en el suelo.

Control químico: el control químico de *V. dahliae* ha creado grandes expectativas, por la ventaja estratégica que puede presentar para el manejo y protección de plantas de olivo frente a la enfermedad. Sin embargo, los resultados de numerosos estudios indican que los fungicidas disponibles en la actualidad no son eficaces para controlarla.

Mancha ocular del olivo u ojo de pavo

El agente causal del ojo de pavo es el hongo *Spilocaea oleagina* (*Cycloconium oleaginum*). Este patógeno específico del olivo, es un parásito obligado, que se desarrolla exclusivamente en el interior de la cutícula en las hojas. Pertenece al grupo de hongos imperfectos o deutomerizetes, los cuales se reproducen exclusivamente por esporas asexuales llamadas conídias (Trapero et al/1998).

Sintomatología

Las infecciones causadas por *S. oleagina* se caracterizan por el desarrollo de manchas circulares de tamaño variable y de color café oscuro en el haz de la hoja (Foto 44). En primavera estas manchas presentan un halo amarillento que puede extenderse al resto de la hoja. En invierno las manchas oculares, son más oscuras debido a la abundante producción de esporas. Las lesiones son fácilmente distinguibles en el haz foliar. También pueden ser detectadas sobre la nervadura central en el envés de la hoja, en el peciolo foliar, o en el pedúnculo del fruto. Las características de las lesiones dependen de la variedad, la edad de la lesión y de las condiciones ambientales en las que se desarrollan.

Foto 44. Manchas circulares sobre el haz de la hoja causadas por *S. Oleagina* (ojo de pavo)
Ciclo del patógeno

S. oleagina sobrevive fundamentalmente en las hojas infectadas que permanecen en el árbol. Por su carácter de parásito obligado, las hojas que caen al suelo tiene escasa importancia epidemiológica.

La multiplicación y dispersión del patógeno se realiza a partir de conidias producidas sobre las lesiones en las hojas, las cuales en condiciones de alta humedad relativa o en presencia de agua libre, germinan y se dispersan a corta distancia mediante salpicaduras de gotas de agua y viento. El proceso de infección se desarrolla principalmente en hojas jóvenes, muy susceptibles a la enfermedad, en presencia de agua libre y temperaturas de entre 8 y 20°C, con una temperatura óptima de 15°C.

En huertos con abundante inóculo, la etapa final de la primavera, puede ser una época especialmente favorable para la infección del patógeno. En esa época la presencia de un ambiente fresco y húmedo, generalmente coincide con la abundancia de hojas nuevas susceptibles, las cuales al no estar protegidas darán origen a una severa infección. Las infecciones primaverales generalmente permanecen latentes durante el verano, sin producir caída de hojas. Su importancia, sin embargo radica, en que constituirán la principal fuente de inóculo para futuras infecciones de otoño e invierno. El período de incubación, es decir, el tiempo que transcurre desde la infección hasta la aparición de los primeros síntomas puede oscilar entre 4 y 15 semanas. La duración de este período dependerá de la temperatura, humedad relativa, cultivar de olivo y edad de las hojas. Generalmente las ramas bajas e interiores reciben una mayor cantidad de inóculo y permanecen mojadas por períodos de tiempo más prolongados, por consiguiente es la zona de la planta que presenta el nivel de infección más alto (López *et al*, 1997).

Control

Medidas culturales: en función de la importancia que tiene la humedad relativa alta y el agua libre para la multiplicación y dispersión del patógeno, el manejo de la enfermedad debe considerar diversas medidas culturales que favorezcan la ventilación de las plantas y disminuyan el tiempo de humectación foliar. Dentro de esta estrategia, las podas selectivas y el empleo de marcos de plantación que eviten la formación de copas densas o muy juntas son prácticas muy recomendables.

La información disponible indica que las plantas sometidas a programas nutricionales que incluyen altos niveles de nitrógeno, o plantas que presenten deficiencias de potasio, son más susceptibles a los ataques del patógeno (López *et al*, 1997). Esta información debe ser empleada para diseñar programas nutricionales equilibrados.

Control químico: en Chile recién se han iniciado estudios para determinar la eficacia y validez que puede tener el control químico de la enfermedad bajo nuestras condiciones. En otros países como España, el uso de fungicida para proteger hojas y frutos ha sido una estrategia exitosamente empleada. Los fungicidas cúpricos son los más utilizados en el manejo de la enfermedad, aplicados
solos ó en mezcla con otros ingredientes activos como Captan o Mancozeb. Este tipo de tratamiento es de carácter preventivo y debe ser aplicado con volúmenes que aseguren el cubrimiento completo de la copa, ramas bajas e interiores de la planta.

Los fungicidas benomilo y dicofenazol (ingredientes activos), por su calidad de sistémicos, han demostrado ser eficientes contra S. oleaginosa, especialmente en función del crecimiento subcuticular que presenta el hongo en hojas de plantas enfermas (Traperó et al. 1998).

En áreas de producción donde se utiliza control químico, se ha demostrado que la mejor época de aplicación para tratamientos con fungicidas es otoño y finales del invierno. Estos periodos coinciden con la época de mayor producción de esporas y condiciones favorables para la infección de S. oleaginosa.

Emplomado o repilo plomizo

El término “repilo” se utiliza para designar diversos estados patológicos de la planta de olivo caracterizados por una intensa desfoliación en ramas y ramillas.

En el valle del Huasco, especialmente en sectores de cultivo con alta humedad relativa, el emplomado o repilo plomizo, causado por Myrocentrospora cladosporioideas (Cercospora cladosporioideas) fue detectado en forma simultánea con la “mancha ocular” u “ojo de pavo”. Aún cuando la desfoliación es un efecto común de ambas enfermedades, existe una serie de características específicas que deben ser consideradas para el manejo del “repilo plomizo”.

El hongo M. cladosporioideas, es específico del olivo. Es un patógeno saprófita, pero presenta una fase parásita importante durante la colonización en el envés de las hojas. Se reproduce por conidias o espora asexuales (Traperó et al. 1998).

Sintomatología

Los síntomas del “emplomado” se presentan tanto en el haz como en el envés de las hojas. Sobre el haz, se producen manchas cloróticas de forma irregular, las cuales posteriormente se necrosan. En el envés de la hoja, las manchas son difusas de color grisáceo o plomizo, las cuales, durante el proceso de esporulación acentúan su coloración gris (Foto 45). En el fruto el hongo provoca lesiones necróticas, deprimidas, de tamaños variables y formas irregulares.

Foto 45. Síntomas de “repilo plomizo” o “emplomado” sobre el envés y haz de hojas de la variedad Sevillano. Intensa esporulación de M. cladosporioideas produce áreas de coloración gris en el envés de las hojas.
Epidemiología
Las hojas que caen al suelo juegan un papel importante en el ciclo de vida de *M. cladosporioides*, puesto que en esas estructuras el patógeno desarrolla una gran cantidad de esporas.
La dispersión del hongo se produce a partir de conídias desarrolladas en las lesiones. La producción de conídias depende de la presencia de agua libre o de una alta humedad relativa. Su dispersión a corta distancia se produce por el viento y por las salpicaduras de gotas de lluvia. En este caso, la infección es favorecida por la presencia de agua libre, como rocíos o neblinas, y temperaturas cercanas a los 18°C.
A diferencia de *S. oleagina* (mancha ocular), *M. cladosporioides* coloniza de preferencia las hojas maduras. Su período de incubación es de 4 a 15 semanas. Al igual que en el caso de la mancha ocular, generalmente la infección más severa se presenta en las ramas bajas e interiores de la planta. (Del Moral y Medina, 1985).

Control
En su fase saprófita el patógeno produce una gran cantidad de esporas. Este fenómeno hace aconsejable, la permanente eliminación en el huerto, de las fuentes productoras de inoculo, tales como hojas y frutos infectados que han caído al suelo.
Dada la importancia que tiene la alta humedad relativa y la presencia de agua libre para la infección, multiplicación y dispersión del patógeno, las medidas culturales que se apliquen deben estar orientadas a favorecer la ventilación de las plantas y a disminuir el tiempo de humectación, así se dificultará el desarrollo de nuevas infecciones. Al igual que la mancha ocular, la poda selectiva y los marcos de plantación que eviten la formación de copas muy cercanas, permitirán mantener un ambiente menos favorable al patógeno (Traper et al, 1998).

Deformación de la hoja del olivo
Esta enfermedad también es conocida como "hoja en forma de hoz" (sickle leaf), debido a la forma lateralmente curvada que adquieren las hojas afectadas por el patógeno (Thomas, 1958).
La naturaleza de los síntomas inducidos por el agente causal de la enfermedad y su transmisión por injerto determinó que durante mucho tiempo la deformación de la hoja del olivo fuera atribuida a la acción de un virus (Ogawa y English, 1991). Sin embargo, numerosas investigaciones en las que se injertó e inoculó artificialmente plantas sanas con material obtenido desde plantas enfermas, fueron incapaces de demostrar esta hipótesis (Waterworth y Monroe, 1975). La falta de herramientas moleculares, el largo período de incubación que presenta el patógeno (7 meses a 3 años) y su lento movimiento dentro de las plantas ha dificultado la identificación del patógeno. Resultados de estudios en los que se utilizó técnicas moleculares, como PCR, han sugerido que algunos organismos del tipo viroides podrían estar involucrados con la expresión de la enfermedad, sin embargo, no se han reportado pruebas de patogenicidad que permitan establecer, en forma consistente, la relación de estos viroides con los síntomas observados en plantas de olivo.
La enfermedad ha sido reportada en países como Italia, Portugal y EE.UU. (Ogawa y English, 1991). En Chile, en la III Región, la enfermedad había sido detectada sobre huertos establecidos con plantas adultas (superior a 25 años) de la variedad Sevillano. Recientemente, en el valle del Huasco, se han observado síntomas severos de deformación a partir del segundo ciclo de crecimiento, en plantas de la variedad Sevillano que venían infectadas desde el vivero.

Sintomatología

Esta enfermedad no presenta síntomas en los frutos. Su principal característica es la forma curvada similar a una hoz y el menor tamaño que presentan las hojas afectadas (Foto 46). Las hojas pueden presentar, además, clorosis, especialmente en el lado interno de la curvatura.

A pesar que la enfermedad parece tener un carácter sistémico, los síntomas no son evidentes en todas las ramas ni en todas las hojas. En árboles adultos afecta sólo a alguna de sus ramas, las que presentan atrofias en su crecimiento, un alto grado de desfoliación y una reducción significativa en el número de frutos. Generalmente en las plantas enfermas se observan más hojas asintomáticas que sintomáticas.

Los resultados de una investigación en plantas de la variedad Sevillano infectadas en vivero, indican que la enfermedad redujo significativamente el número de inflorescencias por ramilla, número de flores por inflorescencias, porcentaje de cuaja y número de frutos por ramilla.

Foto 46. Síntomas de la deformación de la hoja del olivo. Curvatura lateral de hojas en plantas enfermas de la variedad Sevillano.
En el tercer ciclo de crecimiento de las plantas infectadas en el vivero, las ramillas de plantas totalmente enfermas, fueron capaces de mantener sólo el 6% de las inflorescencias que mantenían las ramillas sanas. Las inflorescencias de ramillas enfermas mantuvieron un 78% de las flores que mantuvieron las inflorescencias de ramillas sanas. En las ramillas enfermas se redujo la cuaja de frutos en un 67,5%, lo que significó, finalmente, una reducción de 82,5% en el número de frutos cosechados por ramilla.

Control

En las condiciones del norte de Chile, la enfermedad se ha detectado únicamente en plantas de la antigua variedad Sevillano, lo cual sugiere, como medida de control, el empleo de variedades modernas, que no han expresado síntomas de la enfermedad, en la renovación de huertos antiguos y en el establecimiento de huertos nuevos.

Para un control efectivo de la enfermedad, es recomendable utilizar material de propagación obtenido a partir de plantas sanas, o que, por lo menos, no presenten síntomas de la enfermedad. Resultados de investigaciones realizadas en otros países señalan que el patógeno se inactiva completamente al someter las plantas nuevas de olivo a temperaturas de 37°C por un período de tres o más semanas. Luego, la termoterapia o exposición de estructuras de propagación a altas temperaturas, podría ser utilizada eventualmente para limpiar de la enfermedad a aquel material obtenido desde plantas que a pesar de ser asintomáticas, estén establecidas en huertos donde exista una gran presión de la enfermedad.
Bibliografía.

CAPÍTULO 11
Cosecha

Francisco Tapia C.

El fruto del olivo o aceituna, denominado técnicamente como oliva, corresponde a una drupa, que pesa entre menos de 1 hasta más de 7 gramos. Está constituida por un exocarpo o epidermis, que refleja externamente los cambios en el proceso de maduración del fruto; el mesocarpo o pulpa, parte comestible, que es donde se concentran los azúcares y aceites, y el endocarpo, constituido por una estructura pétrea que envuelve la semilla. Es apetecida por su aceite, que se extrae mediante métodos físicos, y también por la pulpa, la cual es sometida a un proceso de fermentación que le otorga características muy particulares.

Dependiendo del genotipo de la variedad, de las condiciones ambientales y del manejo agronómico, los procesos fisiológicos que se suceden en el fruto, dan como resultado diferencias en el período de maduración y en el contenido interno de azúcares y aceite.

Las aceitunas para mesa se cosechan en diferentes estados, dependiendo del tipo de proceso a la que serán sometidas (verde estilo sevillana hasta negras naturales), que no siempre coinciden con la madurez fisiológica del fruto. En las destinadas para aceite, en cambio, el índice de cosecha debe coincidir con la máxima acumulación de grasa.

El fruto durante su desarrollo, que dura entre seis y siete meses, demanda gran cantidad de energía, necesitando temperaturas superiores a 25°C, durante, por lo menos, un período de cuatro o cinco meses, a contar desde el cuajado de frutos, en octubre–noviembre, hasta la cosecha. En el valle de Huasco, dependiendo del destino que se le dará a la aceituna, la cosecha puede hacerse desde temprano en abril hasta no más allá de la primera quincena de julio. Las aceitunas de mesa se cosechan más temprano y las aceiteras más tarde. Un factor importante de considerar en el período de cosecha, especialmente en el caso de estas últimas, es el grado de precocidad de la variedad, ya que existen algunas que son más precoces, como ‘Empeltre’, y otras más tardías, como la ‘Verde’ (variedad local).

El presente capítulo, entrega nociones básicas para la cosecha de un producto de calidad, definiendo con claridad los índices de cosecha para los diferentes destinos de industrialización de la aceituna.
Índices de cosecha

El desarrollo de la aceituna, explicado en detalle en el Capítulo 2, presenta tres fases claramente definidas. En cada fase se produce un evento importante en el desarrollo del fruto, que determinan, principalmente, el tamaño y el contenido de aceite y azúcares, siendo esto último lo que define la cantidad y calidad del aceite que se obtenga y la calidad de la aceituna en el proceso de fermentación. Por ello es importante definir la curva de crecimiento de cada variedad, para cosechar en la época precisa.

Por ejemplo, el desarrollo del fruto para las variedades Azapa y Empeltre, presenta la misma tendencia (ver figuras 2 y 3 en capítulo 2). Sin embargo, el inicio de la madurez en ‘Empeltre’ se produce en la segunda quincena de febrero y en ‘Azapa’, a mediados de marzo, en el valle de Huasco. En climas de menor acumulación térmica, el inicio de la madurez se desplaza hacia la derecha, retrasándose el periodo de cosecha.

El proceso de maduración es complejo, en el que se suceden una serie de cambios metabólicos y físicos, los cuales se han correlacionado con el aspecto externo del fruto, principalmente de coloración.

La correlación entre el cambio del contenido de clorofila y la biosíntesis de antocianinas (qué son las que dan la coloración al fruto), con el contenido de aceite y azúcares, ha permitido desarrollar índices de cosecha relacionados con el color de aceituna aceitera y de mesa. En la escala de colores para las aceiteras, se define sólo un nivel de coloración de piel y pulpa óptimo para la cosecha, que indica que el fruto ha alcanzado la máxima acumulación de grasas. En cambio en la escala de coloración de piel y pulpa para aceitunas de mesa, el índice óptimo de cosecha se define de acuerdo al tipo de proceso de preparación a la que serán sometidas.

Aceituna aceitera

El componente mayoritario de una aceituna es el agua, la cual puede llegar hasta un 90% en estados inmaduros, mientras que el contenido de aceite se va incrementando hasta llegar a la madurez con un 18 a 25%, medido sobre la base de materia húmeda (M.H). En la madurez el contenido de agua es de un 70%, punto en que la acumulación de aceite es mayor y de mejor calidad. Una vez que el proceso se encuentra dentro de lo que se ha definido como punto óptimo de cosecha, el porcentaje de aceite se mantiene constante, a menos que se produzca una variación en el porcentaje del agua del fruto, por exceso de riego o por senescencia de éste o “sobremaduración”, lo cual afecta de manera inversa al contenido porcentual de aceite (más % de agua, menos % relativo de aceite y viceversa), pero en ningún caso esto definirá una mayor o menor producción de aceite por superficie.

En la Figura 13, se presenta la curva de ganancia de aceite en el fruto durante su período de maduración. Como se puede apreciar, la ganancia de aceite, base materia seca (M.S.), es máxima para la variedad Arbequina entre los estados de madurez 2 y 3, y luego decrece. Por esto la definición del estado óptimo de cosecha permitirá maximizar la extracción de aceite desde un determinado huerto y de una variedad específica.
Figura 13. Curva de acumulación de aceite base Materia Seca (ac MS), Materia Húmeda (ac M.H.) y contenido de humedad en aceitunas de la variedad Arbequina cultivada en el valle de Huasco.

El punto óptimo de cosecha de aceitunas aceiteras está definido en una escala de coloración de la piel y pulpa, que va desde la Clase 0, que corresponde a un color de fruto verde intenso, lo que se relaciona con una mínima acumulación de aceite, hasta la Clase 7, en que el fruto se encuentra en plena madurez (piel negra y pulpa morada hasta el hueso), con evidentes síntomas de ablandamiento, condición en que el contenido de aceite ha descendido.

Se ha determinado que el mayor contenido de aceite en el fruto, para la mayoría de las variedades, se encuentra cuando el índice de madurez está entre las clases 3 y 4. En el estado de madurez posterior a la Clase 4, el contenido de aceite comienza a disminuir y a deteriorarse su calidad. En el Cuadro 27, se indican las diferentes clases de madurez definidas para aceitunas aceiteras.

La determinación del índice de madurez óptimo de cosecha se calcula de la siguiente forma: primero se colectan 100 frutos de alrededor de los árboles en todo el huerto que se quiere cosechar. Los frutos recolectados se clasifican según su coloración externa en las ocho categorías indicadas en el Cuadro 27. Luego se aplica la fórmula:

\[
I.M. = \frac{(Ax0) + (Bx1) + (Cx2) + (Dx3) + (Ex4) + (Fx5) + (Gx6) + (Hx7)}{100}
\]

Donde, A,B,C,D,E,F,G,H corresponden al número de frutos por cada clase de madurez, indicadas por los números del 0 al 7. La ecuación debe dar un I.M. entre 3 y 4 para proceder a cosechar las aceitunas aceiteras.
Cuadro 27. Escala de coloración que define el estado de madurez para aceitunas aceiteras

<table>
<thead>
<tr>
<th>Clase</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Piel verde intensa</td>
</tr>
<tr>
<td>1</td>
<td>Piel verde amarillenta</td>
</tr>
<tr>
<td>2</td>
<td>Piel verde con manchas rojizas en menos de la mitad del fruto. Inicio de pinta</td>
</tr>
<tr>
<td>3</td>
<td>Piel rojiza o morada en mas de la mitad del fruto. Final de pinta</td>
</tr>
<tr>
<td>4</td>
<td>Piel negra y pulpa blanca</td>
</tr>
<tr>
<td>5</td>
<td>Piel negra y pulpa morada sin llegar a la mitad de la pulpa</td>
</tr>
<tr>
<td>6</td>
<td>Piel negra y pulpa morada sin llegar al hueso</td>
</tr>
<tr>
<td>7</td>
<td>Piel negra y pulpa morada hasta el hueso</td>
</tr>
</tbody>
</table>

Fuente: Barranco et al, 2000

Aceituna de mesa

El índice de cosecha para este tipo de aceituna, está relacionado con el tipo de proceso al cual se desea someter el fruto. Fundamentalmente se tienen tres tipos de preparación de aceitunas, las que van desde una cosecha en verde, pasando por color cambiante (negras oxidadas) y finalmente negras en plena madurez, la cual sirve para la preparación de aceitunas negras naturales.

Los índices de cosecha para cada una de estas preparaciones se define de la siguiente manera:

Aceitunas verdes: corresponden a frutos cosechados en estado verde, justo antes del inicio de pinta, cuando la coloración de la aceituna varía de verde intenso a verde amarillo pajizo. Además, cuando al realizar un corte transversal, se produce una fácil separación entre pulpa y hueso y al exprimir la pulpa, escurre líquido lechoso. Este índice de cosecha se utiliza para la preparación de aceitunas “verde estilo sevillano” y “verde estilo siciliano”, entre otras.

Aceitunas de color cambiante: son aceitunas que han sido cosechadas desde pinta hasta antes de plena madurez, cuya coloración varía desde la aparición de las primeras manchas rojizas o violáceas hasta frutos casi completamente negros. Las aceitunas cosechadas así son destinadas a la preparación de aceitunas “tipo negras” o “negras oxidadas”.

Aceitunas negras naturales: son aceitunas cuyo índice de madurez corresponde a frutos que, tanto la piel como la pulpa, están completamente negros o negros violáceos, es decir, en plena madurez. El destino de estas aceitunas es para las preparaciones “negras naturales” y “negras estilo griego”, entre otras. Sin lugar a dudas que cosechar en plena madurez para producir este tipo de aceitunas, tiene un gran efecto en el añerismo del olivo, pues para lograr la madurez óptima, la cosecha debe realizarse tarde en la temporada, pudiendo comprometer la producción de la siguiente temporada.
El inicio de la cosecha de aceituna de mesa se define cuando más del 60% de las aceitunas presentan la coloración definida para cada índice, existiendo en general, dos modalidades. La primera corresponde a la cosecha total del árbol, para luego clasificar la fruta de acuerdo al índice de cosecha definido para cada proceso de preparación. La segunda es de tipo selectiva, es decir sólo se cosecha la aceituna definida para una preparaciones determinada. Estos tipos de cosecha son conocidos en el campo como “cosecha al barrer” y “cosecha floreo”, respectivamente.

Recolección o cosecha

Cosecha manual

La aceituna de mesa normalmente se cosecha a mano: el fruto se toma y se saca ejerciendo una fuerza perpendicular a la ramilla. En aceituna de mesa no se realiza el sistema de “ordeña”, pues el fruto puede quedar dañado cuando es frotado con las hojas. Las aceitunas desprendidas de la ramilla se depositan, con cuidado, sobre un canasto acolchado para evitar magulladuras y machucones. Posteriormente se vacían a cajones cosecheros de 20 kg de capacidad, los cuales se dejan apiados y protegidos del sol, a la espera de ser enviados a la bodega de proceso, lo que debe realizarse durante la misma jornada.

Parte de la cosecha manual es factible de mecanizar, utilizando equipos vibradores de tronco. Sin embargo, la aceituna debe ser sometida a un tratamiento adicional para evitar la aparición de lesiones causadas en la caída, por los golpes entre ellas y con el suelo. El tratamiento consiste en sumergir la aceituna recién cosechada en una solución de hidróxido de sodio (soda cáustica) al 0,3 o 0,5% durante unas 6 horas. Luego se continúa con el proceso normal de preparación de aceitunas.

Las aceitunas aceiteras pueden ser cosechadas con menos cuidado que las de mesa, pero de todos modos debe evitarse que se rompan. La cosecha puede realizarse mediante “ordeña”, la cual consiste en tomar la rama en carga desde su extremo basal, arrastrando la mano hacia el extremo opuesto, de modo que caiga el mayor número de aceituna por cada pasada. La ordeña se puede mecanizar mediante el uso de rastrillos de plástico, que funcionan como un peine y entre los dientes va arrastrando las aceitunas.

El vareo, es decir derribar los frutos con el golpe de una vara sobre las ramas fructíferas, es un método bastante drástico, que usado sin conocimiento puede causar mas daños que beneficios, pues se pueden romper los frutos y ramillas. Sin embargo, cuando se conoce la técnica da buenos resultados, obteniéndose una cosecha rápida, con un mínimo daño de frutos y follaje.

Cosecha mecánica

Este tipo de cosecha puede ser utilizada en olivares destinados para aceite y también para mesa. Sin embargo para esta última requiere de ajustes de la maquinaria y sistema de cultivo. La cosecha mecánica es rápida y limpia, no obstante para que sea empleada satisfactoriamente, la arquitectura del árbol debe ser adecuada, es decir, la estructura de ramas debe tener ángulos
en 45º para que se transmita la vibración, o un manejo en seto para el uso de maquinarias cosecheras tipo cabalgantes, lo cual se logra con una buena poda de formación (ver capítulo 7). Básicamente, existen dos métodos de cosecha mecanizada: uno es por vibración de troncos o ramillas, lo que es útil en árboles de gran desarrollo, y el otro es mediante la vibración de ramillas. Para esto último se utilizan las cosechadoras cabalgantes, las que cubren ambas caras del seto y producen un frotamiento mediante varas. Con ese movimiento las aceitunas se sueltan y caen. La maquinaria posee canoas especiales, que reciben el fruto en la parte baja del árbol, y estanques de acopio, hasta donde son conducidas las aceitunas desde las canoas. Este tipo de cosechadoras tiene eficiencias sobre el 90% y permite una limpieza simultánea del fruto cosechado.

En general, en la cosecha de aceitunas para aceite éstas caen al suelo. El método más utilizado para la recolección es la colocación de malla sobre el suelo y una vez caída la aceituna, es recogida y depositada en los contenedores para ser llevados a la almazara (molino de aceite).

Bibliografía: