CONSERVACION DE FORRAJES

Marisol González Yáñez
Ing. Agr. M. Phil.
Depto. Producción Animal
CRI – La Platina (INIA)

En Chile, la producción ganadera más barata y eficiente se basa en el uso de la pradera como la fuente más económica de proteína, por lo cual conviene aprovecharla al máximo.

En general a lo largo de todo el país existe el mismo problema para cualquier tipo de producción animal que se desee desarrollar: un déficit de forraje proveniente de praderas en el período Invernal y un excedente en el período de Primavera – Verano. Como los animales necesitan una alimentación uniforme a través de todo el año, es necesario trasladar este excedente y ello es posible mediante la denominada “Conservación de Forrajes” que puede ser en dos formas:

- En forma de “Heno” o también llamado “Pasto Seco” por los agricultores.

- En forma de “Ensilage” o también llamado “Pasto Fermentado”.

HENO

Es el sistema de conservación de forrajes más popular en Latinoamérica, especialmente a nivel de los pequeños productores, debido a que las necesidades de maquinaria que ocupa son mínimas.

Se denomina “Heno” al forraje verde proveniente de una pradera de corte o permanente que ha sido segado y expuesto al sol para extraerle una proporción importante de la humedad que contiene el forraje al estado natural (18 a 20 % de materia seca o M.S.) y llegar a un producto con 80-88% M.S. Su secado tiene una duración de aproximadamente 48 a 72 horas, de acuerdo a las condiciones climáticas y a la Región del país, siendo menores en la RM, V y VI Regiones y mayores en las Regiones del sur del país.

El forraje primero se corta con ayuda de una máquina segadora y se deja secar en el potrero. Puede ser volteado a las 24 horas para facilitar su secado en el potrero y luego ser recogido cuando esté listo. Esta última maniobra se hace en la práctica tomando una pequeña porción del forraje seco en la mano y presionándolo contra la palma, de modo que ésta no quede húmeda.

La recolección puede ser en varias formas:

- **En Rama.** Consiste en recogerlo del potrero tal cual y almacenarlo entero o “en rama “ en algún galpón del predio.

- **Enfardado.** En los típicos fardos de heno y amarrados con alambre o pitilla plástica.

- Enfardado en grandes rollos o “parvines”, como se les llama en Argentina. Es caro y requiere de una máquina especial.
• Almacenado en “parvas” en el potrero mismo. Estas consisten en unos típicos montones redondeados elaborados con ayuda de una horqueta en torno a un Palo central o no y cubiertos o no con una porción parcial de polietileno.

• Caballetes. Consiste en secar parcialmente el forraje sobre el mismo potrero, y luego se termina en Caballetes, que no son otra cosa que dos estructuras como escaleras pequeñas unidas en su parte superior. De esta forma, el forraje se termina de secar en una especie de ruca, con penetración del sol y/o viento por todos sus costados.

• Elaborado en forma de “pellets” con ayuda de una máquina especial. Es el sistema más caro de todos.

El heno de mejor calidad es el de Leguminosas como la Alfalfa, con un alto contenido de proteína cruda (P.C.) de aproximadamente 16 a 18 %, que se elabora en las Regiones centrales del país. Le siguen en calidad los de Gramíneas como Ballicas. Los de más bajo contenido en P.C. son los henos de pradera mixta de las Regiones del sur del país, como consecuencia de la lluvia durante su confección, motivo que baja su contenido en P.C. a 8 – 10% como máximo. Por este motivo, es una práctica normal que los productores de leche, lleven desde la zona central del país, heno de alfalfa de tercer corte en adelante para sus vacas lecheras de alta producción.

En general, todos los Ruminantes necesitan la inclusión de heno o pasto seco de buena calidad en su dieta, por la cantidad de fibra que éste posee y que es necesaria para el normal funcionamiento de su aparato digestivo.

10 PUNTOS IMPORTANTES PARA OBTENER UN HENO DE BUENA CALIDAD

Para obtener un heno de primera calidad es necesario tener presentes 10 puntos importantes de considerar y que son los siguientes:

1.- TIPO DE FORRAJE ADECUADO

Las leguminosas forrajeras son las más adecuadas para henificar. Entre de ellas la alfalfa, tanto por sus características de planta (erecta, gran proporción de hojas, tallos y hojas firmes), como por su alto contenido de proteína, produce sin problemas henos con un contenido proteico de 16%.

Existen especies más susceptibles a la pérdida de hojas luego del secado. Ello implica una fuerte pérdida de principios nutritivos como proteínas, vitaminas y azúcares solubles, debido a que son las hojas de las plantas las ricas en estos componentes. Para evitar esto, se debe evitar más de lo necesario el pasto cortado. Otra solución consiste en enfardar con un poco mayor humedad de lo recomendado y luego permitir el secado en un galpón bien ventilado.

De acuerdo a lo anterior, el trébol rosado es una especie menos apta para henificar, porque posee menor proporción de hojas, y además se desprenden fácilmente, lo que disminuye el contenido nutritivo del forraje seco.

Tampoco resulta adecuado el heno de pradera permanente, el cual en la zona sur se destina a animales de lecherías, de menores requerimientos nutritivos (vacas al término de la lactancia y secas, terneros machos, toretes, novillos, toro).
2.- LARGO DEL REZAGO

En la zona central, donde el heno se confecciona mayoritariamente de alfalfa, la pradera debe rezagarse por alrededor de 30 a 35 días, entre octubre y abril. El momento óptimo para enfardar coincide con la aparición de las primeras flores. Por cada día extra de rezago sobre el mencionado, se produce una disminución de 0,5 puntos de proteína cruda y un aumento del mismo tenor en el contenido de fibra cruda, disminuyendo el valor nutritivo y la digestibilidad del heno. En la zona sur, el heno se confecciona por lo general a fines de Diciembre o en Enero con praderas permanentes basadas en ballica perenne más trébol blanco, y es conveniente que el rezago no exceda los 60 días, con el fin de obtener el más alto contenido de proteína, energía y digestibilidad. Ello coincide con la aparición en el potrero de la primera espiga en la gramínea y la primera flor en la leguminosa.

3.- NUMERO DE CORTE DE LA PRADERA

Es ideal que la pradera destinada a heno esté libre de malezas y contenga la mayor proporción de las especies forrajeras puras. En el caso de la alfalfa esto se logra enfardando las praderas desde el tercer corte en adelante —los dos cortes anteriores se destinan a soiling o suministro en verde— o utilizando herbicidas selectivos. La presencia de malezas es baja en praderas permanentes de la zona sur, ya que por lo general son establecidas en otoño y los primeros pastoreos se efectúan temprano en primavera con animales menores (terneras, vaquillas) o con vacas lecheras en lactancia (pero con baja carga animal), que realizan un eficiente control de las malezas. En este tipo de pradera, más importante que el número de corte es el año de establecimiento; no es recomendable destinar a corte una pradera de primer año.

4.- MOMENTO DEL CORTE

El momento adecuado para el corte es a medio día, con el máximo de radiación solar, de modo que la planta contenga el máximo nivel de carbohidratos, producto del proceso de fotosíntesis. Sin embargo, ello es posible sólo para pequeñas superficies. En extensiones mayores debe hacerse durante todo el día, siendo importante comenzar el corte en la mañana, después que se levante el rocío, para evitar humedad extra en el forraje. Lo mismo debe considerarse para la hora de término: no es conveniente que sea muy avanzada.

5.- CONDICIONES AMBIENTALES

Lo más recomendable es cortar el forraje en días de sol y baja humedad relativa. En la zona central no es un problema, pues desde fines de primavera se tiene estabilidad en las condiciones meteorológicas durante el período de confección (generalmente diciembre y enero). En la zona sur, es común la ocurrencia de lluvias o de alta humedad relativa, no siendo conveniente cortar en esas circunstancias.

6.- TIEMPO DE SECADO

La velocidad de secado va a estar directamente relacionada con la proporción del tallo con relación al total de la planta, debido a que el agua contenida en el tallo tarda más en evaporarse que en las hojas.

El buen heno se logra con una exposición al sol de aproximadamente uno a dos días en la zona central, y de dos a tres en la zona sur, donde, bajo buenas condiciones climáticas, el viento sur predominante en la época de henificación contribuye a la deshidratación del material. Es
aconsejable que el número de días de secado del forraje sea el exacto. No conviene excederse, debido a que se produce el “blanqueo del heno”; el producto se torna de un color verde blanquecino, por la excesiva cantidad de radiación solar, y pierde su valor nutritivo.

7.- PROCESO DE HENIFICACION

Se debe asegurar con anticipación que las herramientas de corte (guadañas, máquina) estén disponibles y preparadas con anticipación a la faena (cuchillas en buen estado, rodamientos, insumos, etc). Para acelerar el proceso de secado, se aconseja el uso de segadora- acondicionadora. La inversión del material cortado debe efectuarse con rastrillo, evitando al máximo la caída de hojas de la planta. Es importante trabajar a una velocidad moderada y evitar las horas de mayor calor. En la confección del heno hay que regular la presión de la enfardadora, para lograr fardos de peso adecuado, y recolectar oportunamente el material desde el potrero, tratando de minimizar la rotura de los fardos y la recolección de fardos húmedos.

8.- RECOLECCION Y ALMACENAMIENTO

Una vez confeccionado el heno, ya sea en rama, en caballete, en parvas, en fardos o en rollos, tiene que ser retirado de inmediato del potrero. Así se evita perder nutrientes por la excesiva radiación solar o por la posibilidad de lluvias, como ocurre en la zona sur. Recién recogido, debe almacenarse rápidamente en alguna bodega, galpón, o en el extremo de un potrero bien cubierto con polietileno oscuro y grueso, donde permanecerá hasta su utilización. En la bodega o galpón es necesario ordenar los fardos en forma adecuada. Ello implica una capa o estrato en un sentido y la que va encima en sentido contrario, con el fin de evitar caídas y problemas dentro del galpón de guarda. Se requiere buena ventilación para evitar accidentes causados por el fuego o por una posible combustión debida al sobrecalentamiento del material, producto a su vez de una fermentación indeseable del forraje que hubiera quedado húmedo. Esto último se evita con una revisión periódica en la primera semana del almacenaje, lo cual es bastante engorroso, resultando más adecuado no enfardar forraje con menos de 88 a 90 % de materia seca (o mayor a 10 a 12 % de humedad).

9.- ALGUNOS CUIDADOS DE IMPORTANCIA ANTES DEL SUMINISTRO

Al momento de ofrecer el heno a los animales, inicios del invierno, conviene verificar que no contenga hongos o mohos, los cuales se detectan por una cierta humedad, acompañada de un color blanquecino y café oscuro a negro, además de un olor característico. Las porciones del material que los contengan, deben descartarse, ya que producen micotoxinas y aflatoxinas. Pequeñas cantidades de estas últimas causan la muerte inmediata de los animales, especialmente de crías de pocos días e incluso de vacas lecheras en lactancia. En el caso de fardos con amarra de alambre, se debe cuidar que no queden restos metálicos en el potrero, fatales para de los animales que los ingieran.

10.- FORMA DE SUMINISTRO

Por lo general en el país el producto se suministra picado o entero (en rama). En terneros pequeños de lechería usualmente se ofrece picado (mediante molino de martillo) o bien en rama en rastrillos ubicados sobre los corrales. Para terneros de reemplazo, vaquillas y vacas secas u otra categoría animal (toretes, novillos, toro), se entrega en rama dentro de comederos colectivos en corrales o en potreros durante el período invernal, o bien desparramado directamente sobre la
pradera. En algunas ocasiones el heno se industrializa y convierte en pellets para su transporte y mejor utilización, aunque, por su alto costo, no es una modalidad frecuente en Chile.

VENTAJAS DEL HENO

El heno presenta ciertas ventajas con respecto al ensilaje, y que son las siguientes:

- La confección de heno es un proceso más simple y más conocido por el productor.
- La henificación necesita menos maquinaria, por lo cual es más adecuada para pequeños productores.
- El suministro de heno a los animales es una labor simple.
- El heno elaborado en fardos es de fácil comercialización.

DESVENTAJAS DEL HENO

Las desventajas de la confección de heno son las siguientes:

- La elaboración de heno depende en gran medida de las condiciones climáticas. Es necesario contar con un tiempo soleado y seco, por lo cual es más posible un mayor porcentaje de pérdidas.

ENSILAJE

El ensilaje se basa en la conservación más antigua que existe de los alimentos, y que es el principio de la fermentación, que no es otra cosa que la fermentación de los azúcares que contiene un alimento, cambiando así la acidez inicial en el alimento fresco desde un pH o índice de acidez de 6,5 ó 6,0 a 3,8 ó 4,0 al cual se estabiliza.

El ensilaje consiste en la fermentación del contenido de carbohidratos presentes en el forraje verde mediante la acción de bacterias ácido lácticas o lactobacilos y que los transforman en ácido láctico, en un medio anaeróbico (en ausencia de oxígeno) y a una temperatura óptima, hasta alcanzar una suficiente acidez (pH = 3,8 a 4,2 máximo) y al cual se estabiliza.

También podemos decir que el ensilaje es el resultado final de la conservación de un forraje cosechado bajo condiciones que hacen posible la producción de suficiente cantidad de ácido láctico a partir de un adecuado contenido de carbohidratos del forraje verde inicial, para mantener el producto final sin deterioro.

Por otra parte, el silo es el recipiente o contenedor en el cual se efectúa el ensilaje, y silo no es sinónimo de ensilaje.

Antiguamente, la mayoría de los agricultores confeccionaba una mayor cantidad de forraje conservado como heno que como ensilaje, pero actualmente esa tendencia se ha revertido cada vez más, con el mejoramiento de la tecnología para producir mejores ensilajes y que permite al ganadero obtener un buen ensilaje en términos de proteína y energía. En los países del norte de Europa, desde los años 60 a la fecha, se ha producido un gran incremento en la confección de ensilajes de pradera y una disminución en el mismo porcentaje en la elaboración de heno. Incluso en la X Región del país, actualmente muchos de los pequeños agricultores están elaborando ensilaje de pradera ya sea en rama (que no es lo más recomendado, ni de la mejor calidad) o bien arrendando maquinaria para efectuarlo con corte de pequeño tamaño.
Dentro de un ensilaje se pueden distinguir las 5 etapas siguientes:

1.- Respiración celular, producción de CO2 y producción de calor.
2.- Producción de ácido acético.
3.- Empieza la formación de ácido láctico.
4.- Formación de ácido láctico.
5.- Depende de la fase 4. El ensilado permanece sin alteraciones siempre y cuando se haya formado la suficiente cantidad de ácido láctico.

Si existe insuficiente cantidad de ácido láctico, empieza la formación de ácido butírico. La proteína puede ser descompuesta y producirse excesiva putrefacción.

10 PUNTOS IMPORTANTES PARA OBTENER UN BUEN ENSILAJE

Para obtener un ensilaje de buena calidad es necesario considerar los siguientes aspectos:

1.- EMPLEAR UN FORRAJE ORIGINAL DE BUENA CALIDAD

El forraje original debe ser de buena calidad. Ello incluye un apropiado estado vegetativo y compatibilidad en contenidos de materia seca, proteína cruda y digestibilidad. Si no lo es, la técnica del ensilado no mejora la calidad del producto resultante.

2.- REALIZAR UNA BUENA COMPACTACION DEL FORRAJE

El forraje debe tener un buen tamaño de partícula (ideal de 2 a 3 cm. de largo) para permitir una buena compactación, la cual también debe ser rápida, para eliminar todo el oxígeno presente, por ser el ensilaje un proceso anaeróbico.

3.- LLENAR EL SILO EN EL MENOR TIEMPO POSIBLE

Es ideal que el llenado del silo con el forraje a ser ensilado sea lo más rápido posible. Ojalá tenga una duración máxima de ejecución total de 3,5 días por silo, teniendo cuidado de dejar bien cubierta con polietileno la porción ejecutada cada día. Ello con el fin de eliminar también la mayor cantidad posible de oxígeno contenido en el material a ensilar. Siempre es preferible confeccionar varios ensilajes pequeños en vez de uno solo de mayor tamaño. Una alternativa al no disponer del terreno necesario, consiste en elaborar uno sólo pero de llenado diario en sentido transversal.

4.- EFECTUAR UN BUEN SELLADO CON POLIETILENO

Una vez finalizada la confección del ensilaje, el polietileno de la cubierta debe sellar bien en todo su contorno el material ensilado. En caso de tener más de un solo trozo, éstos deben quedar bien superpuestos para evitar la entrada de aire (oxígeno) al interior del material ensilado.
5.- REALIZAR UNA BUENA COBERTURA SOBRE EL POLIETILENO

Una vez sellado el polietileno, debe realizarse una buena cobertura sobre éste con tierra o algún material de descarte o inerte (paja, forraje de mala calidad, bolsas con arena u otro producto) agregado por lo menos un espesor de 20 cm. para proteger toda la superficie y así evitar su ruptura en la superficie o en los costados, por las cuales puede entrar aire y/o agua de lluvia durante el invierno. Asimismo, se evita la acción de roedores o de otros animales sobre el polietileno.

6.- PROTECCION DE CONTORNOS DEL ENSILAJE RECIEN CONFECCIONADO

Es importante proteger los contornos del ensilaje recién confeccionado, con el fin de evitar entrada de animales, vehículos o maquinaria al sector aledaño, y así protegerlo de cualquier daño que éstos pudieran causarle.

7.- PERMITIR UNA FERMENTACION ADECUADA DEL FORRAJE ENSILADO

Es necesario permitir el transcurso de al menos 30 a 35 días antes de abrir el ensilaje recién confeccionado, para permitir que el forraje bien compactado y en ausencia de oxígeno, sufra la fermentación requerida, y que ocurra aproximadamente durante este período.

8.- APERTURA DEL ENSILAJE

La apertura del ensilaje debe efectuarse, levantando y enrollando hacia atrás el polietileno, extrayendo sólo la porción a suministrar a los animales cada día, y volviendo a cubrirla completamente con éste. Al realizar este manejo, se evita la entrada de aire, el cual causa oxidaciones de los nutrientes del ensilaje y/o fermentaciones secundarias indeseables, como asimismo la formación de hongos y levaduras que se alimentan de éstos. Sobre la cobertura de la porción que se comenzó a suministrar, conviene dejar un estacón o tronco a modo de peso, para sujetar el polietileno de la abertura.

9.- CORTE DIARIO DEL FORRAJE A OFRECER A LOS ANIMALES

Cada día es conveniente efectuar el corte sólo de la porción a ofrecer, con el fin de evitar la entrada de aire al ensilaje y al igual que en el punto anterior evitar la acción de hongos y levaduras, como también la pérdida de nutrientes que recibirán los animales. En caso que el racionamiento del producto sea de varias veces diarios, el ideal es que éste sea cortado en la misma forma.

Una buena alternativa ampliamente usada en países desarrollados, es el uso de maquinarias cortadoras en block, de modo de cortar un cubo de ensilaje para las necesidades de racionamiento diario. Este tipo de corte, minimiza la entrada de aire tanto al producto de reciente corte, como al material restante.

10.- CONVENIENCIA DE ANALIZAR NUTRICIONALMENTE EL ENSILAJE CONFECCIONADO

Es conveniente que al ensilaje confeccionado se le efectuyé un análisis nutricional, con el fin de determinar el exacto contenido en materia seca, proteína cruda, Energía Digestible o Energía Metabolizable y valor D que éste posee, para formular la ración necesaria. Ello es de importancia, pues normalmente sus contenidos son muy diferentes al de las tablas, y al formular una ración basada en ensilaje, se requiere conocer exactamente sus contenidos, sin sobre o sub
estimación de los mismos. De esta forma, se puede ofrecer los nutrientes para la correspondiente categoría animal y lograr los objetivos planteados en aumentos de peso y producción deseados.

METODOS PARA MEJORAR LA CALIDAD DE LOS ENSILAJES

En general la calidad de los ensilajes puede ser mejorada mediante el uso de los siguientes métodos:

1.- Maquinaria usada y tamaño de picado.
2.- Premarchitamiento.
3.- Uso de aditivos.
4.- Tipo de silo.

1.- Maquinaria usada y tamaño de picado

El forraje destinado al ensilaje puede cortarse directamente con una cosechadora de forraje, generalmente con una chopper sin replicador tipo Tiki, e impulsado a un coloso, o cortar con una segadora, secar parcialmente en el campo mediante premarchitamiento y luego recoger el forraje con otra máquina antes de ensilar.

En sus comienzos, cuando se inició la confección de ensilaje, el forraje era de largo tamaño de picado y se usaba maquinaria que no laceraba ni cortaba el material fresco. En cambio, actualmente el forraje fresco que va a ser ensilado está sujeto a gran tratamiento mecánico, y así es posible obtener un material finamente picado de aproximadamente 10 mm de largo, antes de ser ensilado. Este gran desarrollo en los últimos treinta años ha tenido varios beneficios en el producto final, pero el costo de la maquinaria a ensilar ha aumentado enormemente.

Con la introducción de la Chopper con replicador (tipo Tiki), la compactación del material fresco se hizo más fácil y generalmente se obtuvieron en el silo temperaturas menores a 25 °C. Luego con la introducción de la cosechadora de forraje, la confección del ensilaje se simplificó y mejoró su calidad, debido a que es más fácil compactar el material que ha sido cortado, golpeado y lanzado por la cosechadora de forraje. Además se liberan más saponinas que contienen carbonhidratos y otros nutrientes importantes para la proliferación de las bacterias ácido lácticas, ayudando así a comenzar la fermentación en forma inmediata.

Se ha establecido que al aumentar el tamaño de picado, normalmente se produce un mejoramiento en las características fermentativas, las cuales se reflejan en el pH, nitrógeno amoniácal (N-NH₃) y ácidos orgánicos. Por otro lado, también con menor tamaño de picado, se ha encontrado un aumento en el consumo y en la digestibilidad del ensilaje, sobre todo cuando el contenido de materia seca del forraje es menor al 30%.

2.- Premarchitamiento

Los ensilajes con alto valor nutritivo, pueden confeccionarse ya sea en forma directa o por premarchitamiento siempre y cuando el forraje fresco posea una alta digestibilidad y se adopte una buena tecnología para ensilar.

El objetivo del premarchitamiento es remover agua del forraje fresco, aumentar la calidad fermentativa del ensilaje y producir una mayor ingestión. Tiene las siguientes ventajas:
• Aumenta la concentración de carbohidratos solubles (CHS) en el forraje fresco, permitiendo un ensilaje estable a un pH alto en forma natural.
• Reduce la pérdida de efluentes.
• Disminuye la actividad de los clostridios.
• Aumenta la velocidad de cosecha y de alimentación al producir mayor capacidad de los colosos. O sea, disminuye el número de colosadas por ha.
• Reduce el tamaño del silo requerido.
• Tiene pérdidas de campo más altas que el corte directo.
• Produce menos pérdidas por almacenamiento.
• En general produce una mejor fermentación.
• Produce mayores consumos de ensilaje en base a materia seca bajo buenas condiciones de premarchitamiento. Bajo condiciones climáticas adversas, se produce lo contrario.
• Produce mayores aumentos de peso.

En general, es deseable una meta de premarchitamiento de 24 horas para llegar a un 25 % materia seca (M.S.) en el forraje a ensilar, a fin de tener una buena fermentación, alta digestibilidad y lo menos posible de efluente.

3.- Uso de Aditivos

Consiste en agregar un producto a un ensilaje con el fin de mejorar la preservación, impidiendo la mala fermentación causada por bacterias indeseables como son los clostridios, y en algunos casos para suprimir la fermentación en el silo.

En general, el uso de un aditivo en un ensilaje, controla y/o mejora la fermentación en el silo, reduce las pérdidas y mejora la calidad nutritiva del ensilaje para uso animal. Aún siendo muy eficientes, no mejoran las fallas del ensilaje como corte tardío o un pobre sellado.

Se justifica el uso de un aditivo cuando se trata de un forraje tierno, pues su acción es casi nula o nula en forraje de alto contenido en materia seca o sobremaduro. También se justifica al tratarse de un forraje muy tierno con bajo contenido en M.S. y en CHS y en condiciones climáticas adversas y que no es posible premarchitar.

En Gran Bretaña se ha propuesto un sistema de estrellas y puntaje para la aplicación de aditivos a los ensilajes y que se basa en las especies forrajeras empleadas, en la fertilización de N aplicada, en el porcentaje de M.S. del cultivo, en el tipo de máquina cosechadora empleada y en la estación del año.

4.- Tipo de silo

El tipo de silo a emplear es otro factor que incide en la obtención de un ensilaje de mejor compactación, y por ende de mejor calidad.

Entre los tipos de silos más empleados tenemos:

• Silo Torre. Es el que produce el mejor ensilaje, pero se ha des continuado por el alto costo de construcción.
• Silo Parva. Es el que produce la peor calidad, normalmente por problemas de compactación.
• Silo Zanja o Trinchera. Utilizado al tener un espacio o pendiente natural. Permite buena compactación.
Silo Torta. Actualmente descontinuado.
Silo Canadiense. Bastante usado. Requiere paredes laterales. Permite buena compactación
Silo Brazo de Reina o Dorset. No muy usado. De llenado diario. Permite buena compactación. Es uno de los que produce mejor calidad de ensilaje.

FACTORES QUE INCIDEN EN EL CONSUMO DE ENSILAJES

En general en todos los sistemas de producción animal, el límite en el consumo de los nutrientes está dado por el consumo que haga el animal, el cual es voluntario, y en éste interactúan factores del animal, del alimento y del ambiente. En general, se sabe cuánto alimento consume un animal, pero poco o nada sobre como es consumido, dependiendo de la frecuencia, duración de la ingesta y de la tasa de ingestión por comida.

1.- Factores que inhiben el consumo

Estos factores son:

*Factores químicos.

Concentración de Ácidos Grasos Volátiles (AGV). Estos son los productos más abundantes en los ensilajes. Junto con el contenido total de ácidos se relacionan negativamente con un consumo voluntario de ensilajes.

Contenido de Aminas. Una parte del contenido de proteínas del forraje a ensiladar, es convertido mediante la acción de microorganismos proteolíticos en Aminas (histaminas, putrescinas y cadaverinas) que tienen una marcada acción en la inhibición del consumo voluntario del alimento por parte de los animales.

Contenido de N amoniaca (N-NH3). El N-NH3 es producido durante la fermentación de los ensilajes debido a la acción proteolítica de los microorganismos del género Clostridium y Enterobacteria. En general, el N-NH3 expresado como porcentaje del N total, se correlaciona en forma negativa con el consumo voluntario. Este contenido puede dar un índice para separar a los ensilajes en aquellos de bajo consumo y de alto consumo.

*Factores Físicos

Contenido de Materia Seca (M.S). En general existe una estrecha relación entre el contenido de M.S. de los ensilajes y el consumo voluntario. Este efecto sería indirecto, pues el aumento en el contenido de M.S. actuaría restringiendo la intensidad de la fermentación, retardando la actividad de los microorganismos, especialmente de los clostridios. Ello lleva a la reducción de la concentración de los ácidos totales y a una disminución del contenido del N-NH3.

En caso de los ensilajes premarchitos, el aumento del consumo voluntario que éste produce, se debe a un efecto sobre el mejoramiento en la calidad de la fermentación, más que a un efecto en el incremento de materia seca.

Sin embargo, de acuerdo a varios experimentos, el aumento del consumo de M.S. no se refleja en aumento de producción de carne o leche.
• Tamaño del Picado. El consumo voluntario de ensilaje puede aumentar al disminuir el tamaño de picado, siendo este aumento un reflejo de mejor fermentación en el silo y de un aumento de la tasa de paso a través del tracto digestivo.

El tamaño de picado tiene un efecto relacionado con la menor regurgitación de partículas de tamaño grande, y que es más importante en los ovinos. De ahí la importancia que los ensilajes destinados a ovinos, deben tener un menor tamaño de partícula que los destinados a otras especies animales.

De acuerdo a diversos estudios, el menor consumo de ensilaje por parte de los animales, se debe a un tamaño de picado largo, el cual es consumido más lentamente que uno de tamaño pequeño.

FACTORES QUE ESTIMULAN EL CONSUMO VOLUNTARIO

Son dos los factores que estimulan el consumo voluntario:

1.- Palatabilidad.
2.- Digestibilidad.

1.- Palatabilidad

En pastoreo, los animales escogen su alimento de acuerdo a la palatabilidad, usando para ello los sentidos de olfato, gusto, tacto y vista. Estabulados en cambio, al no tener elección, se afecta su tasa de consumo de alimentos. Este efecto no se debe al llenado del rúmen, sino a una menor tasa de ingestión, la que refleja una menor palatabilidad y que se relaciona con la presencia de productos de fermentación que entregaría olores y sabores desagradables en el ensilaje.

La relación positiva entre una alta tasa de consumo de ensilaje y consumo total de M.S. es una respuesta a una mayor palatabilidad.

2.- Digestibilidad

La digestibilidad de un ensilaje depende de la digestibilidad del forraje original. De allí la importancia de cosechar el forraje con la mayor digestibilidad posible, y que coincida con el estado fenológico de la planta al corte, y que es más importante que el método de cosecha y almacenamiento. Por ello, es de gran importancia la cosecha del cultivo en la etapa de madurez más apropiada para obtener un ensilaje de buena digestibilidad.

De lo anterior deriva el que varios autores coincidan en que el estado fenológico óptimo para el corte en Gramíneas para ensilaje debe ser al estado de emergencia de la espiga.

Además, tanto la digestibilidad como el contenido de proteína cruda (P.C.) disminuyen a medida que avanza la madurez de la pradera, mientras el rendimiento al corte aumenta y también el contenido en M.S.

Como conclusión, se puede decir que entre los factores más importantes que afectan el valor nutritivo de los ensilajes de pradera está la digestibilidad, el cual está determinado por el estado de crecimiento de la pradera al momento del corte. Sin embargo, se debe considerar que el proceso de la fermentación misma también influye en la digestibilidad de un ensilaje, es
variable y éste depende del contenido de humedad del forraje original, del tipo de silo y del grado de compactación del ensilaje.

Finalmente podemos concluir que la digestibilidad de los forrajes ensilados depende fundamentalmente de la digestibilidad del forraje fresco cosechado.

CALCULO DE NECESIDADES DE ENSILAJE PARA PERIODO CRITICO DE ALIMENTACION INVERNAL DE OVEJAS

Períodos críticos de alimentación invernal en ovejas:

- **Período pre – parto**: 30 días.
- **Período post – parto**: 60 días (60 primeros días de lactancia).

Total período crítico: 90 días.

La cantidad a suplementar va a depender de los siguientes factores:

- Estado de la oveja.
- Requerimientos nutritionales.
- Aporte en calidad y cantidad de la pradera.

En términos generales, de acuerdo a estimaciones promedio de los requerimientos nutritivos de la oveja y de la producción de la pradera, se ha determinado que la oveja necesita tal como ofrecido (base materia verde) las siguientes cantidades:

- 0,6 Kg. Heno/ Oveja/día
 - ó
- 2,0 Kg. Ensilaje de Pradera o Ensilaje de Avena/Oveja/día.

Por lo tanto, para los 90 días críticos se requiere por oveja:

- 54 Kg de Heno (2 fardos de 25 Kg.)
 - ó
- 180 Kg. Ensilaje de Pradera o Ensilaje de Avena.

Para el rebaño de 20 Ovejas de un Pequeño Productor, durante los 90 días críticos se requerirá las siguientes cantidades:

- 1080 Kg. Heno (43 Fardos de 25 Kg).
- 3600 Kg. Ensilaje de Pradera o Ensilaje de Avena.

Como en términos prácticos, un metro cúbico de ensilaje pesa 500 Kg. Entonces se requerirá:

- 7,2 metros cúbicos de Ensilaje de Pradera o Ensilaje de Avena para el rebaño de las 20 Ovejas.

NOTA: Es importante considerar además un 20 % de pérdidas en el caso del Ensilaje, el cual debe agregarse a la cantidad requerida.
- Para calcular el número de há a ensilar, debe considerarse previamente la producción de M.S. de la pradera. Ello en términos de materia verde (M.V. o tal como ofrecido, que es el término más manejado por los productores, equivaldría en Primavera a un forraje con aproximadamente 20% M.S., por lo cual para transformar la M.S. en M.V. se puede multiplicar aproximadamente por cinco, a fin de obtener el cálculo en ton. M.V. de forraje.

VENTAJAS DEL ENSILAJE

- El ensilaje permite un rango más amplio de condiciones climáticas que el heno, por lo cual es normal que se produzcan menores pérdidas por factores climáticos en la elaboración de Ensilaje.

DESVENTAJAS DEL ENSILAJE

- Requiere de más maquinaria que para la henificación, por lo cual el costo es más alto.
- Es un proceso más complicado y de más difícil comprensión por el productor.
- El suministro de ensilaje al ganado es una labor más engorrosa para el productor.

Cuadro 1.- Valores de composición química para henos

<table>
<thead>
<tr>
<th>Componente</th>
<th>Heno Prad. Perm. Temprano</th>
<th>Heno Prad. Perm. Tardío</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.S. (%)</td>
<td>83,7</td>
<td>82,6</td>
</tr>
<tr>
<td>P.C. (%)</td>
<td>9,0</td>
<td>7,1</td>
</tr>
<tr>
<td>E. Met (Mcal./kg.)</td>
<td>2,16</td>
<td>2,00</td>
</tr>
<tr>
<td>F.C. (%)</td>
<td>34,3</td>
<td>34,2</td>
</tr>
</tbody>
</table>

Cuadro 2.- Conservación de forraje para pequeños productores. Análisis químico inicial de la pradera

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>M.S. (%)</th>
<th>P.C. (%)</th>
<th>Digest. in vitro (%)</th>
<th>Disponib. M.S. (ton/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>En Rama (Nov.)</td>
<td>24,5</td>
<td>9,7</td>
<td>65,2</td>
<td>5,1</td>
</tr>
<tr>
<td>Caballete (Nov.)</td>
<td>22,4</td>
<td>10,0</td>
<td>63,9</td>
<td>5,3</td>
</tr>
<tr>
<td>Parva (Enero)</td>
<td>44,1</td>
<td>5,3</td>
<td>49,7</td>
<td>7,8</td>
</tr>
<tr>
<td>Rama (Enero)</td>
<td>44,7</td>
<td>5,2</td>
<td>49,2</td>
<td>6,7</td>
</tr>
</tbody>
</table>

Cuadro 3.- Análisis químico final en el heno durante el periodo de Otoño – Invierno.

<table>
<thead>
<tr>
<th>Tratamientos</th>
<th>M.S. (%)</th>
<th>P.C. (%)</th>
<th>Digest. \textit{in vitro}. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>En Rama (Nov.)</td>
<td>86,1</td>
<td>8,8</td>
<td>66,4</td>
</tr>
<tr>
<td>Caballote (Nov.)</td>
<td>84,4</td>
<td>9,5</td>
<td>65,9</td>
</tr>
<tr>
<td>Parva (Enero)</td>
<td>86,3</td>
<td>4,7</td>
<td>56,4</td>
</tr>
<tr>
<td>Rama (Enero)</td>
<td>77,5</td>
<td>4,9</td>
<td>55,5</td>
</tr>
</tbody>
</table>

Cuadro 4.- Características de ensilajes tempranos y tardíos de Avena – Pasto en la Xa Región.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Ensil. Av - Pasto</th>
<th>Ensil. Av - Pasto</th>
<th>Ensil. Av – Pasto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temprano Bien Sellado</td>
<td>Tardío Bien Sellado</td>
<td>Tardío Mal Sellado</td>
</tr>
<tr>
<td>M.S. (%)</td>
<td>22.9</td>
<td>25.1</td>
<td>22.1</td>
</tr>
<tr>
<td>P.C. (%)</td>
<td>9.9</td>
<td>8.9</td>
<td>8.2</td>
</tr>
<tr>
<td>E.Met. (Mcal/kg.E.Met.)</td>
<td>2.32</td>
<td>2.15</td>
<td>2.18</td>
</tr>
<tr>
<td>F.C. (%)</td>
<td>34.1</td>
<td>37.7</td>
<td>37.6</td>
</tr>
</tbody>
</table>

Cuadro 5.- Características de Ensilajes de pradera tempranos y tardíos en la Xa. Región.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bien Sellado</td>
<td>Mal Sellado</td>
<td>Tardío</td>
</tr>
<tr>
<td>M.S. (%)</td>
<td>19.2</td>
<td>21.4</td>
<td>26.0</td>
</tr>
<tr>
<td>P.C. (%)</td>
<td>12.4</td>
<td>9.9</td>
<td>9.7</td>
</tr>
<tr>
<td>E.Met. (Mcal/kg.)</td>
<td>2.46</td>
<td>2.39</td>
<td>2.22</td>
</tr>
<tr>
<td>F.C. (%)</td>
<td>32.7</td>
<td>34.0</td>
<td>35.0</td>
</tr>
</tbody>
</table>

Cuadro 6.- Efecto de los días de madurez en la calidad nutritiva de ensilajes de pradera y en la respuesta animal.

<table>
<thead>
<tr>
<th>Días Madurez</th>
<th>Composición química</th>
<th>Consumo voluntario (kg. M.S./anim./día)</th>
<th>Ganancia peso vivo (kg. P.V./día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>M.S. (%) = 17.1</td>
<td>7.52</td>
<td>0.731</td>
</tr>
<tr>
<td></td>
<td>P.C. (%) = 17.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor "D" = 66.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>3.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-NH₃</td>
<td>7.89</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>M.S. (%) = 20.1</td>
<td>6.62</td>
<td>0.379</td>
</tr>
<tr>
<td></td>
<td>P.C. (%) = 13.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valor "D" = 62.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PH</td>
<td>3.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-NH₃</td>
<td>9.69</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 7.- Efecto de los días de madurez sobre la digestibilidad en la M.S., consumo voluntario y respuesta animal.

<table>
<thead>
<tr>
<th>Días de madurez</th>
<th>Digestibilidad de la M.S. (%)</th>
<th>Consumo voluntario (kg.M.S./día)</th>
<th>Ganancia de peso vivo (kg./día)</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>70</td>
<td>4.6</td>
<td>0.73</td>
</tr>
<tr>
<td>63</td>
<td>62</td>
<td>4.5</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Cuadro 8.- Rendimiento de M.S. al corte y composición química del ensilaje obtenido al cosechar una pradera de Ballica perenne con Trébol blanco en cinco estados de madurez.

<table>
<thead>
<tr>
<th>Estado fenológico *</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Días de crecimiento</td>
<td>54</td>
<td>63</td>
<td>79</td>
<td>94</td>
<td>113</td>
</tr>
<tr>
<td>Rendimiento M.S. (ton./há)</td>
<td>3,4</td>
<td>5,1</td>
<td>7,3</td>
<td>7,8</td>
<td>6,7</td>
</tr>
<tr>
<td>M.S. (%)</td>
<td>17,4</td>
<td>17,7</td>
<td>20,2</td>
<td>26,1</td>
<td>40,5</td>
</tr>
<tr>
<td>P.C. (%)</td>
<td>18,3</td>
<td>15,1</td>
<td>12,3</td>
<td>10,9</td>
<td>8,8</td>
</tr>
<tr>
<td>Digest. in vitro (% Base M.S.)</td>
<td>71,2</td>
<td>67,3</td>
<td>57,3</td>
<td>53,0</td>
<td>51,0</td>
</tr>
</tbody>
</table>

- **Estado fenológico**: 1.- Bota.
 2.- Inicio de Espigadura.
 3.- Inicio de Floración.
 4.- Grano Acuoso - Lechoso.
 5.- Grano harinoso - Duro.

Fuente: ELIZALDE et al. (1993).

Cuadro 9.- Efecto del sistema de cosecha de ensilajes sobre el consumo voluntario y comportamiento ingestivo.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Corte simple</th>
<th>Corte de precisión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño de picado (mm.)</td>
<td>92</td>
<td>40</td>
</tr>
<tr>
<td>Nª comedas/día</td>
<td>9,4</td>
<td>9,0</td>
</tr>
<tr>
<td>Tamaño de comida (kg.M.S.)</td>
<td>1,02</td>
<td>1,16</td>
</tr>
<tr>
<td>Velocidad ingestión promedio (g.M.S./min).</td>
<td>53,6</td>
<td>58,6</td>
</tr>
<tr>
<td>Velocidad ingestión durante 1ª comida del día (g. M.S./min.)</td>
<td>79,3</td>
<td>85,3</td>
</tr>
<tr>
<td>Consumo M.S. (kg. M.S./día)</td>
<td>9,4</td>
<td>10,2</td>
</tr>
</tbody>
</table>

Cuadro 10.- Relación entre contenido de nitrógeno amoniacal y consumo relativo de Ensilaje.

<table>
<thead>
<tr>
<th>Nitrógeno amoniacal (% N total)</th>
<th>Consumo relativo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menos de 5%</td>
<td>100</td>
</tr>
<tr>
<td>Entre 5 – 10 %</td>
<td>98</td>
</tr>
<tr>
<td>10 – 15 %</td>
<td>95</td>
</tr>
<tr>
<td>Mayor a 15%</td>
<td>90</td>
</tr>
</tbody>
</table>

LITERATURA CONSULTADA

